Skip to main content
Log in

Problems of Identification and Quantification in Archaeozoological Analysis, Part I: Insights from a Blind Test

  • Published:
Journal of Archaeological Method and Theory Aims and scope Submit manuscript

Abstract

In archaeozoology, counts are generally considered as replicable data that accurately represent the initial abundances of elements, individuals, or taxa, although perhaps only at the ordinal scale. However, few studies have tested these assumptions with control data. To improve our knowledge of these issues, we conducted a blind test that involved the analysis of two large experimental samples composed of modern ungulate specimens of known element and taxon. Because the samples differed in level of fragmentation, the blind test provides substantial information on the impact of bone processing on faunal identification and quantification. Our results suggest that Number of Identified SPecimens (NISP) and Minimum Number of Elements (MNE) provide measures of abundance for whole assemblages and for samples limited to non-long bones that are both replicable and accurate at the ratio scale. However, the same metrics generally failed, even at the ordinal level, to predict abundances in analyses restricted to long bones and long bone portions. Given these mixed results, it seems judicious, in agreement with the current majority view among archaeozoologists, to treat faunal tallies as ordinal-level information. Despite issues of reproducibility and the difficulty of aggregating counts with MNE, the blind test also indicates that this measure is more robust at predicting skeletal abundances than NISP. Substantial variations in rates of long bone fragmentation and identification probably explain the poorer performance of NISP in the blind test.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Bartram, L. E., & Marean, C. W. (1999). Explaining the “Klasies Pattern”: Kua ethnoarchaeology, the Die Kelders Middle Stone Age archaeofauna, long bone fragmentation and carnivore ravaging. Journal of Archaeological Science, 26, 9–29.

    Article  Google Scholar 

  • Binford, L. R. (1978). Nunamiut ethnoarchaeology. New York: Academic Press.

    Google Scholar 

  • Blumenschine, R. J. (1988). An experimental model of the timing of hominid and carnivore influence on archaeological bone assemblages. Journal of Archaeological Science, 15, 483–502.

    Article  Google Scholar 

  • Bökönyi, S. (1970). A new method for the determination of the number of individuals in animal bone material. American Journal of Archaeology, 74, 291–292.

    Article  Google Scholar 

  • Bouchud, J. (1962). Nouvelles recherches sur le renne quaternaire en France. In G. G. Simpson (Ed.), Problèmes actuels de paléontologie (pp. 417–432). Paris: Éditions du CNRS.

    Google Scholar 

  • Bouchud, J. (1975). Étude de la faune de l’Abri Pataud. In H. L. Movius (Ed.), Excavation of the Abri Pataud, Les Eyzies (Dordogne) (pp. 69–153). Cambridge: Peabody Museum of Archaeology and Ethnology.

    Google Scholar 

  • Breitburg, E. (1991). Verification and reliability of NISP and MNI methods of quantifying taxonomic abundance: A view from historic site zooarchaeology. In J. R. Purdue, W. E. Klippel & B. W. Styles (Eds), Beamers, bobwhites, and blue-points: Tributes to the career of Paul W. Parmalee (pp. 153–162). Springfield: Illinois State Museum Scientific Papers Vol. 23.

  • Buckley, M., Whitcher Kansa, S., Howard, S., Campbell, S., Thomas-Oates, J., & Collins, M. (2010). Distinguishing between archaeological sheep and goat bones using a single collagen peptide. Journal of Archaeological Science, 37, 13–20.

    Article  Google Scholar 

  • Bunn, H. T. (1991). A taphonomic perspective on the archaeology of human origins. Annual Review of Anthropology, 20, 433–467.

    Article  Google Scholar 

  • Cannon, M. D. (1999). A mathematical model of the effects of screen size on zooarchaeological relative abundance measures. Journal of Archaeological Science, 26, 205–214.

    Article  Google Scholar 

  • Cannon, M. D. (2013). NISP, bone fragmentation, and the measurement of taxonomic abundance. Journal of Archaeological Method and Theory, 20, 397–419.

    Article  Google Scholar 

  • Casteel, R. W. (1977). A consideration of the behavior of the minimum number of individuals index: a problem in faunal characterization. OSSA, 3/4, 141–151.

    Google Scholar 

  • Dirrigl Jr., F. J. (2001). Bone mineral density of wild turkey (Meleagris gallopavo) skeletal elements and its effect on differential survivorship. Journal of Archaeological Science, 28, 817–832.

    Article  Google Scholar 

  • Dirrigl Jr., F. J. (2002). Differential identifiability between chosen North American gallinaceous skeletons and the effect of differential survivorship. Acta Zoologica Cracoviensia, 45, 357–367.

    Google Scholar 

  • Domínguez-Rodrigo, M. (2012). Critical review of the MNI (minimum number of individuals) as a zooarchaeological unit of quantification. Archaeological and Anthropological Sciences, 4, 47–59.

    Article  Google Scholar 

  • Driver, J. C. (1992). Identification, classification and zooarchaeology. Circaea, 9, 35–47.

    Google Scholar 

  • Driver, J. C. (2011). Twenty years after “identification, classification and zooarchaeology”. Ethnobiology Letters, 2, 36–39.

    Article  Google Scholar 

  • Ducos, P. (1968). L’origine des animaux domestiques en Palestine. Bordeaux: Imprimerie Delmas: Publications de l’Institut de Préhistoire de l’Université de Bordeaux: Mémoire no. 6.

    Google Scholar 

  • Faith, T. J. (2007). Sources of variation in carnivore tooth-mark frequencies in a modern spotted hyena (Crocuta crocuta) den assemblage, Amboseli Park, Kenya. Journal of Archaeological Science, 34, 1601–1609.

    Article  Google Scholar 

  • Gobalet, K. W. (2001). A critique of faunal analysis; inconsistency among experts in blind tests. Journal of Archaeological Science, 28, 377–386.

    Article  Google Scholar 

  • Grayson, D. K. (1973). On the methodology of faunal analysis. American Antiquity, 38, 432–439.

    Article  Google Scholar 

  • Grayson, D. K. (1978). Minimum numbers and sample size in vertebrate faunal analysis. American Antiquity, 43, 53–65.

    Article  Google Scholar 

  • Grayson, D. K. (1979). On the quantification of vertebrate archaeofaunas. Advances in Archaeological Method and Theory, 2, 199–237.

    Google Scholar 

  • Grayson, D. K. (1984). Quantitative zooarchaeology: topics in the analysis of archaeological faunas. Orlando: Academic Press.

    Google Scholar 

  • Grayson, D. K., & Frey, C. J. (2004). Measuring skeletal representation. Journal of Taphonomy, 2, 27–42.

    Google Scholar 

  • Higham, C. F. W. (1968). Faunal sampling and economic prehistory. Zeitschrift fur Saugertierkunde, 33, 297–305.

    Google Scholar 

  • Hudson, J. (1990). Advancing methods in zooarchaeology: an ethnoarchaeological study among the Aka Pygmies. Santa Barbara: Unpublished Ph.D. dissertation, University of California.

    Google Scholar 

  • Klein, R. G. (1989). Why does skeletal part representation differ between smaller and larger bovids at Klasies River mouth and other archaeological sites? Journal of Archaeological Science, 6, 363–381.

    Article  Google Scholar 

  • Klein, R. G., & Cruz-Uribe, K. (1984). The analysis of animal bones from archaeological sites. Chicago: University of Chicago Press.

    Google Scholar 

  • Lyman, R. L. (1994a). Vertebrate taphonomy. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Lyman, R. L. (1994b). Quantitative units and terminology in zooarchaeology. American Antiquity, 59, 36–71.

    Article  Google Scholar 

  • Lyman, R. L. (2002). Taxonomic identification of zooarchaeological remains. The Review of Archaeology, 23, 13–20.

    Google Scholar 

  • Lyman, R. L. (2008). Quantitative paleozoology. New York: Cambridge University Press.

    Book  Google Scholar 

  • Lyman, R. L. (2010). Paleozoology’s dependence on natural history collections. Journal of Ethnobiology, 30, 126–136.

    Article  Google Scholar 

  • Lyman, R. L. (2012). The influence of screen-mesh size, and size and shape of rodent teeth on recovery. Journal of Archaeological Science, 39, 1854–1861.

    Article  Google Scholar 

  • Lyman, R. L., & Fox, G. L. (1987). A critical evaluation of bone weathering data as an indication of bone assemblage formation. Journal of Archaeological Science, 16, 293–317.

    Article  Google Scholar 

  • Lyman, R. L., & O’Brien, M. J. (1987). Plow-zone zooarchaeology: fragmentation and identifiability. Journal of Field Archaeology, 14, 493–498.

    Article  Google Scholar 

  • Marean, C. W., & Frey, C. J. (1997). The animal bones from caves to cities: reverse utility curves as methodological artifacts. American Antiquity, 62, 698–711.

    Article  Google Scholar 

  • Marean, C. W., & Kim, S. Y. (1998). Mousterian large-mammal remains from Kobeh Cave: behavioral implications for Neanderthals and early modern humans. Current Anthropology, 39, 79–113.

    Article  Google Scholar 

  • Marean, C. W., & Spencer, L. M. (1991). Impact of carnivore ravaging on zooarchaeological measures of element abundance. American Antiquity, 56, 645–658.

    Article  Google Scholar 

  • Marean, C. W., Abe, Y., Nilssen, P. J., & Stone, E. C. (2001). Estimating the minimum number of skeletal elements (MNE) in zooarchaeology: a review and a new image-analysis GIS approach. American Antiquity, 66, 333–348.

    Article  Google Scholar 

  • Marshall, F., & Pilgram, T. (1993). NISP vs MNI in quantification of body-part representation. American Antiquity, 58, 261–269.

    Article  Google Scholar 

  • Morin, E. (2010). Taphonomic implications of the use of bone as fuel. Palethnologie, 2, 209–217.

    Google Scholar 

  • Morin, E. (2012). Reassessing Paleolithic subsistence: the Neandertal and modern human foragers of Saint-Césaire, France. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Morin, E. and Soulier, M. -C. (2016). New criteria for the archaeological identification of bone grease processing. American Antiquity (in press).

  • Morlan, R. E. (1994). Bison bone fragmentation and survivorship: a comparative method. Journal of Archaeological Science, 21, 797–807.

    Article  Google Scholar 

  • Nascou, A. L. (2012). Variation in arctic wolf (Canis lupus arctos) and spotted hyena (Crocuta crocuta) gnawing damage on an experimental faunal assemblage. Peterborough: Unpublished M.A. thesis, Department of Anthropology, Trent University.

    Google Scholar 

  • O’Connor, T. (2000). The archaeology of animal bones. Stroud: Sutton Publishing.

    Google Scholar 

  • Parmalee, P. W. (1985). Identification and interpretation of archaeologically derived animal remains. In R. I. Gilbert Jr. & J. H. Mielke (Eds.), The analysis of prehistoric diets (pp. 61–95). New York: Academic Press.

    Google Scholar 

  • Payne, S. (1972a). Partial recovery and sample bias: the results from some sieving experiments. In E. S. Higgs (Ed.), Papers in economic prehistory (pp. 49–64). Cambridge: Cambridge University Press.

    Google Scholar 

  • Payne, S. (1972b). On the interpretation of bone samples from archaeological sites. In E. S. Higgs (Ed.), Papers in economic prehistory (pp. 65–81). Cambridge: Cambridge University Press.

    Google Scholar 

  • Perkins, D. (1973). A critique on the methods of quantifying faunal remains from archaeological sites. In J. Matolcsi (Ed.), Domestikationsforschung und Geschichte der Haustiere (pp. 367–369). Budapest: Akademiai Kiado.

    Google Scholar 

  • Pickering, T. R., Marean, C. W., & Domínguez-Rodrigo, M. (2003). Importance of limb bone shaft fragments in zooarchaeology: a response to “on in situ attrition and vertebrate body part profiles” (2002) by M.C. Stiner. Journal of Archaeological Science, 30, 1469–1482.

    Article  Google Scholar 

  • Pickering, T. R., Egeland, C. P., Schnell, A. G., Osborne, D. L., & Enk, J. (2006). Success in identification of experimentally fragmented limb bone shafts: implications for estimates of skeletal element abundance in archaeofaunas. Journal of Taphonomy, 4, 97–108.

    Google Scholar 

  • Poplin, F. (1977). Problèmes d’ostéologie quantitative relatifs à l’étude de l’écologie des hommes fossiles. Bulletin de l’Association Française pour l’Étude du Quaternaire, Supplément, 47, 63–68.

    Google Scholar 

  • Reitz, E. J., & Wing, E. S. (2008). Zooarchaeology (Second ed.). Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Selvaggio, M. M. (1994). Carnivore tooth marks and stone tool butchery marks on scavenged bones: archaeological implications. Journal of Human Evolution, 27, 215–228.

    Article  Google Scholar 

  • Shotwell, J. A. (1958). Inter-community relationships in Hemphillian (Mid-Pliocene) mammals. Ecology, 39, 271–282.

    Article  Google Scholar 

  • Sokal, R. R., & Rohlf, F. J. (1969). Biometry: the principles and practice of statistics in biological research. San Francisco: W. H. Freeman.

    Google Scholar 

  • Turner, A. (1989). Sample selection, schlepp effects and scavenging: the implications of partial recovery for interpretations of the terrestrial mammal assemblage from Klasies River mouth. Journal of Archaeological Science, 16, 1–11.

    Article  Google Scholar 

  • Uerpmann, H. P. (1973). Animal bone finds and economic archaeology: a critical study of the osteoarchaeological method. World Archaeology, 4, 307–322.

    Article  Google Scholar 

  • Val, A., & Mallye, J.-B. (2011). Taphonomie du fouilleur: Influence de la maille de tamis sur la représentation anatomique des petits animaux à fourrure. British Archaeological Report International Series, 2269, 93–100.

    Google Scholar 

  • VanPool, T. L., & Leonard, R. D. (2011). Quantitative analysis in archaeology. London, UK: Blackwell Publishing.

    Google Scholar 

  • Villa, P., Castel, J.-C., Beauval, C., Bourdillat, V., & Goldberg, P. (2004). Human and carnivore sites in the European Middle and Upper Palaeolithic: similarities and differences in bone modification and fragmentation. Revue de Paléobiologie, 23, 705–730.

    Google Scholar 

  • Watson, J. P. N. (1972). Fragmentation analysis of animal bone samples from archaeological sites. Archaeometry, 14, 221–228.

    Article  Google Scholar 

  • Watson, J. P. N. (1979). The estimation of the relative frequencies of mammalian species: Khirokitia 1972. Journal of Archaeological Science, 6, 127–137.

    Article  Google Scholar 

  • Welker, F., Soressi, M., Rendu, W., Hublin, J.-J., & Collins, M. (2015). Using ZooMS to identify fragmentary bone from the Late Middle/Early Upper Palaeolithic sequence of les Cottés, France. Journal of Archaeological Science, 54, 279–286.

    Article  Google Scholar 

  • Wolverton, S. (2013). Data quality in zooarchaeological faunal identification. Journal of Archaeological Method and Theory, 20, 381–396.

    Article  Google Scholar 

  • Zar, J. H. (2010). Biostatistical analysis (5th ed.). Upper Saddle River: Pearson Prentice-Hall.

    Google Scholar 

Download references

Acknowledgments

The authors would like to express their gratitude to Denis Ferrer from “Les viandes de la petite nation” for his curiosity, constant support, and for providing us with much of the skeletal material used in this paper. Our gratitude also goes to Henry Bunn, Curtis Marean, Travis Pickering, John Speth, and Larry Todd for their suggestions concerning the protocol of the blind test. Moreover, we thank Virginia Butler, Mike Cannon, Lee Lyman, John Speth, and the anonymous reviewers for insightful comments made on various drafts of the paper. We are indebted to the many volunteers who helped in the processing, cleaning, labeling, and counting of the thousand specimens assembled for the experiments. Lastly, these analyses would not have been possible without the considerable efforts that the participants put into the blind test. As emphasized by one of the anonymous reviewers, they deserve a medal for their service to this research project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eugène Morin.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(DOC 1.13 mb)

Appendix

Table 19 Counts derived by the participants in the MCE
Table 20 Counts derived by the participants in the BGRE

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morin, E., Ready, E., Boileau, A. et al. Problems of Identification and Quantification in Archaeozoological Analysis, Part I: Insights from a Blind Test. J Archaeol Method Theory 24, 886–937 (2017). https://doi.org/10.1007/s10816-016-9300-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10816-016-9300-4

Keywords

Navigation