Skip to main content
Log in

Data Quality in Zooarchaeological Faunal Identification

  • Published:
Journal of Archaeological Method and Theory Aims and scope Submit manuscript

Abstract

There is no standard for reporting faunal identifications in zooarchaeology. Zooarchaeologists are open to accusations that reported conclusions are invalid. Other sciences counter such problems through use of quality assurance, consisting of quality control (QC), and assessment (QA). QC is a standard for procedures adopted during laboratory practice. A rarely cited standard was published by Driver in 1992. QA focuses on criteria for faunal identification and is becoming more common in zooarchaeology. QC and QA must be integral parts of zooarchaeology if identifications are to be accepted. The stakes are high because paleobiological datasets are now used to study problems in conservation science.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. Here, “taxa” refers generally to species. However, it could refer to genera, families, or higher-order taxa, as at times it is not possible to distinguish between them when studying fragmentary remains (e.g., post-cranial remains of Antilocapra and Odocoileus, or skeletal remains of multiple genera and families of marine or freshwater fishes). Throughout the paper, the seemingly imprecise use of the terms taxa and taxon are meant to reflect that identification of zooarchaeological remains is often imprecise and should be conservative.

References

  • Andrefsky, W. (2005). Lithics: macroscopic approaches to analysis (2nd ed.). Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Balkwill, D. M., & Cumbaa, S. L. (1992). A guide to the identification of postcranial bones of Bos taurus and Bison bison. Syllogeus 71. Ottawa: Canadian Museum of Nature.

    Google Scholar 

  • Barker, A. (2010). Archaeological protein residues: new data for conservation science. Ethnobiology Letters, 1, 58–65.

    Google Scholar 

  • Barker, A., Venables, B., Stevens, S. M., Seeley, K. W., Wang, P., & Wolverton, S. (2012). An optimized approach for protein residue extraction and identification from ceramics after cooking. Journal of Archaeological Method and Theory, 9(3), 407–439.

    Article  Google Scholar 

  • Betts, M. W., Maschner, H. D. G., Schou, C. D., Schlader, R., Holmes, J., Clement, N., & Smuin, M. (2011). Virtual zooarchaeology: building a web-based reference collection of northern vertebrates for archaeofaunal research and education. Journal of Archaeological Science, 38, 755–762.

    Article  Google Scholar 

  • Binford, L. R. (1986). Data, relativism, and archaeological science. Man, 22, 391–404.

    Article  Google Scholar 

  • Bochenski, Z. M. (2008). Identification of skeletal remains of closely related species. Journal of Archaeological Science, 35, 1247–150.

    Article  Google Scholar 

  • Bochenski, Z. M., & Tomek, T. (2000). Identification of bones of galliform hybrids. Journal of Archaeological Science, 27, 691–698.

    Article  Google Scholar 

  • Bovy, K. M. (2011). Archaeological evidence for a double-crested cormorant (Palacrocorax auritus) colony in the Pacific Northwest, USA. Waterbirds, 34, 84–95.

    Article  Google Scholar 

  • Bovy, K. M. (2012). Zooarchaeological evidence for sandhill crane (Grus Canadensis) breeding in northwestern Washington State. In S. Wolverton & R. L. Lyman (Eds.), Conservation biology and applied zooarchaeology (pp. 23–41). Tucson: University of Arizona Press.

    Google Scholar 

  • Brown, C. L., & Gustafson, C. E. (1979). A key to postcranial skeletal remains of cattle/bison, elk, and horse. Pullman: Washington State University Laboratory of Anthropology. Reports of Investigations No 57.

    Google Scholar 

  • Butler, V. L. (2001). Changing fish use on Mangaia, Southern Cook Islands: resource depression and the prey choice model. International Journal of Osteology, 11, 88–100.

    Article  Google Scholar 

  • Butler, V. L., & Lyman, R. L. (1996). Taxonomic identifications and faunal summaries: what should we be including in our faunal reports? Society for American Archaeology, Bulletin, 14, 22.

    Google Scholar 

  • Calder, B. J., Phillips, L. W., & Tybout, A. M. (1982). The concept of external validity. Journal of Consumer Research, 9, 240–244.

    Article  Google Scholar 

  • Chomko, S. A. (1990). Identification of North American rodent teeth. In B. M. Gilbert (Ed.), Mammalian osteology (pp. 72–99). Columbia: Missouri Archaeological Society.

    Google Scholar 

  • Clarkson, C. (2002). An index of invasiveness for the measurement of unifacial and bifacial retouch: a theoretical, experimental and archaeological verification. Journal of Archaeological Science, 29, 65–75.

    Article  Google Scholar 

  • Driver, J. C. (1992). Identification, classification and zooarchaeology. Circaea, 9, 35–47.

    Google Scholar 

  • Driver, J. C. (2011a). Identification, classification and zooarchaeology (featured reprint and invited comments). Ethnobiology Letters, 2, 19–39. http://www.ethnobiology.org/sites/default/files/publications/ebl/pdfs/driverrepubebl.pdf.

    Google Scholar 

  • Driver, J. C. (2011b). Twenty years after identification, classification and zooarchaeology. Ethnobiology Letters, 2, 36–39.

    Google Scholar 

  • Dunnell, R. C. (1982). Science, social science, and common sense: the agonizing dilemma of modern archaeology. Journal of Anthropological Research, 38, 1–25.

    Google Scholar 

  • Fothergill, B. (2008). Analysis and interpretation of the fauna from the Bluff Great House. Master’s Thesis, Department of Archaeology, Simon Fraser University.

  • Frazier, J. (2007). Sustainable use of wildlife: the view from archaeozoology. Journal for Nature Conservation, 15, 163–173.

    Article  Google Scholar 

  • Gee, H. E. (1993). The distinction between postcranial bones of Bos primigenius Bojanus, 1827 and Bison priscus Bojanus, 1827 from the British Pleistocene and the taxonomic status of Bos and Bison. Journal of Quaternary Science, 8, 79–92.

    Article  Google Scholar 

  • Gobalet, K. W. (2001). A critique of faunal analysis; inconsistency among experts in blind tests. Journal of Archaeological Science, 28, 377–386.

    Article  Google Scholar 

  • Gobalet, K. W. (2005). Comment on Size matters: 3-mm sieves do not increase richness in a fishbone assemblage from Arrawarra 1, an Aboriginal Australian shell midden on the mid-north coast of New South Wales, Australia by Vale and Gargett. Journal of Archaeological Science, 32, 643–645.

    Article  Google Scholar 

  • Graham, R. W. (1984). Paleoenvironmental implications of the Quaternary distribution of the eastern chipmunk (Tamias striatus) in central Texas. Quaternary Research, 21, 111–114.

    Article  Google Scholar 

  • Graham, R. W. (1988). The role of climate change in the design of biological preserves. Conservation Biology, 2, 391–394.

    Article  Google Scholar 

  • Grinnell, J. (1922). The role of the accidental. The Auk, 39, 373–380.

    Article  Google Scholar 

  • Gustafson, C. E. (1972). Faunal remains from the Marmes Rockshelter and related archaeological sites in the Columbia Basin. Ph.D. Dissertation, Department of Anthropology, Washington State University.

  • Hager, S. B., & Consentino, B. J. (2006). An identification key to rodent prey in owl pellets from the northwestern and southeastern United States: incisor size to distinguish among genera. The American Biology Teacher, 68, e135–e144.

    Google Scholar 

  • Haglund, W. D., & Sorg, M. H. (Eds.). (2002). Advances in forensic taphonomy: method, theory, and archaeological perspectives. Boca Raton: CRC Press.

    Google Scholar 

  • Hargrave, L. L., & Emslie, S. D. (1979). Osteological identification of sandhill crane versus turkey. American Antiquity, 44, 295–299.

    Article  Google Scholar 

  • Horsburgh, K. A. (2008). Wild or domesticated? An ancient DNA approach to canid species identification in South Africa’s Western Cape Province. Journal of Archaeological Science, 35, 1474–1480.

    Article  Google Scholar 

  • Huber, H. R., Jorgensen, J. C., Butler, V. L., Baker, G., & Stevens, R. (2011). Can salmonids (Oncorhynchus spp.) be identified to species using veterbral morphometrics? Journal of Archaeological Science, 38, 136–146.

    Article  Google Scholar 

  • Hyland, D. C., Tersak, J. M., Adovasio, J. M., & Siegel, M. I. (1990). Identification of species of origin of residual blood on lithic material. American Antiquity, 55, 104–112.

    Article  Google Scholar 

  • Jacobson, J. A. (2003). Identification of mule deer (Odocoileus hemionus) and white-tailed deer (Odocoileus virginianus) postcranial remains as a means of determining human subsistence strategies. Plains Anthropologist, 48, 287–297.

    Google Scholar 

  • Jacobson, J. A. (2004). Determining human ecology on the plains through the identification of mule deer (Odocoileus hemionus) and white-tailed deer (Odocoileus virginianus) postcranial remains. Ph.D. Dissertation, Department of Anthropology, University of Tennessee, Knoxville.

  • Kansa, S.W., (ed). (2011). Special forum: digital communication and collaboration: perspectives from zooarchaeology. SAA Archaeological Record, 11, 10–43

    Google Scholar 

  • Kerlinger, F. (1964). The foundations of behavioural research. New York: Holt.

    Google Scholar 

  • Lawrence, B. (1951). Post-cranial skeletal characteristics of deer, pronghorn, and sheep-goat with notes on Bos and Bison. Papers of the Peabody Museum of American Archaeology and Ethnology, Harvard University 35(3), whole issue.

  • Lawrence, B. (1973). Problems in the inter-site comparisons of faunal remains. In J. Matolcsi (Ed.), Domestikationsforschung und geschichte der haustiere (pp. 397–402). Budapest: Akademiai Kiado.

    Google Scholar 

  • Lindzey, F. G. (1982). Badger. In J. A. Chapman & G. A. Feldhamer (Eds.), Wild mammals of North America: biology, management, and economics (pp. 653–663). Baltimore: Johns Hopkins University Press.

    Google Scholar 

  • Lister, A. M. (1996). The morphological distinction between bones and teeth of fallow deer (Dama dama) and red deer (Cervus elaphus). International Journal of Osteoarchaeology, 6, 119–143.

    Article  Google Scholar 

  • Lyman, R. L. (1986). On the analysis and interpretation of species list data in zooarchaeology. Journal of Ethnobiology, 6, 67–81.

    Google Scholar 

  • Lyman, R. L. (1988). Zoogeography of Oregon coast mammals: the last 3000 years. Marine Mammal Science, 4, 247–264.

    Article  Google Scholar 

  • Lyman, R. L. (2002). Taxonomic identification of zooarchaeological remains. The Review of Archaeology, 23, 13–20.

    Google Scholar 

  • Lyman, R. L. (2006). Paleozoology in the service of conservation biology. Evolutionary Anthropology, 15, 11–19.

    Article  Google Scholar 

  • Lyman, R. L. (2008). Quantitative paleozoology. New York: Cambridge University Press.

    Book  Google Scholar 

  • Lyman, R. L. (2010). Paleozoology’s dependence on natural history collections. Journal of Ethnobiology, 30, 126–136.

    Article  Google Scholar 

  • Lyman, R. L. (2011a). Comment on Identification, classification, and zooarchaeology. Ethnobiology Letters, 2, 33–34.

    Google Scholar 

  • Lyman, R. L. (2011b). A history of paleoecological research on sea otters and pinnipeds of the eastern Pacific rim. In T. J. Braje & T. C. Rick (Eds.), Human impacts on seals, sea lions, and sea otters: integrating archaeology and ecology in the northeast Pacific (pp. 19–40). Berkeley: University of California Press.

    Google Scholar 

  • Lyman, R. L. (2012a). A historical sketch on the concepts of archaeological association, context, and provenience. Journal of Archaeological Method and Theory, 19, 207–240.

    Article  Google Scholar 

  • Lyman, R. L. (2012b). Human-behavioral and paleoecological implications of terminal Pleistocene fox remains at the Marmes Site (45FR50), eastern Washington state, USA. Quaternary Science Reviews, 41, 39–48.

    Article  Google Scholar 

  • Maschner, H. D. G., Betts, M. W., & Schou, C. D. (2011). Virtual Zooarchaeology of the Arctic Project (VZAP). SAA Archaeological Record, 11, 41–43.

    Google Scholar 

  • Maxwell, J. A. (1992). Understanding and validity in qualitative research. Harvard Educational Review, 62, 279–300.

    Google Scholar 

  • Meagher, M. (1986). Bison bison. Mammalian Species, 266, 1–8.

    Google Scholar 

  • Monchot, H., & Gendron, D. (2010). Disentangling long bones of foxes (Vulpes vulpes and Alopex lagopus) from arctic archaeological sites. Journal of Archaeological Science, 37, 799–806.

    Article  Google Scholar 

  • Moss, M. L., & Erlandson, J. M. (2010). Diversity in north Pacific shellfish assemblages: the barnacles of Kit’n’Kaboodle Cave, Alaska. Journal of Archaeological Science, 37, 3359–3369.

    Article  Google Scholar 

  • Moss, M. L., Yang, D. Y., Newsome, S. D., Speller, C. F., McKechnie, I., McMillan, A. D., Losey, R. J., & Koch, P. L. (2006). Historical ecology and biogeography of north Pacific pinnipeds: isotopes and ancient DNA from three archaeological assemblages. Journal of Island and Coastal Archaeology, 1, 165–190.

    Article  Google Scholar 

  • Munro, N. D., Bar-Oz, G., & Hill, A. C. (2011). An exploration of character traits and linear measurements from sexing mountain gazelle (Gazella gazella) skeletons. Journal of Archaeological Science, 38, 1253–1265.

    Article  Google Scholar 

  • Olsen, S. J. (1968). Fish, amphibian and reptile remains from archaeological sites. Cambridge: Peabody Museum.

    Google Scholar 

  • Pérez-Bendito, D., & Rubio, S. (1999). Quality assurance in environmental analysis. In D. Pérez-Bendito & S. Rubio (Eds.), Environmental analytical chemistry (pp. 35–57). Amsterdam: Elsevier.

    Google Scholar 

  • Randklev, C. R., & Lundeen, B. J. (2012). Prehistoric biogeography and conservation status of threatened freshwater mussels (Mollusca: Unionidae) in the upper Trinity River drainage, Texas. In S. Wolverton & R. L. Lyman (Eds.), Conservation biology and applied zooarchaeology (pp. 68–91). Tucson: University of Arizona Press.

    Google Scholar 

  • Rea, A. M. (1986). Verification and reverification: problems in archaeolofaunal studies. Journal of Ethnobiology, 6, 9–18.

    Google Scholar 

  • Resh, V. H., & Unzicker, J. D. (1975). Water quality monitoring and aquatic organisms: the importance of species identification. Water Pollution Control Federation, 47, 9–19.

    Google Scholar 

  • Reynolds, H. W., Glaholt, R. D., & Hawley, A. W. L. (1982). Bison. In J. A. Chapman & G. A. Feldhamer (Eds.), Wild mammals of North America: biology, management, and economics (pp. 972–1007). Baltimore: Johns Hopkins University Press.

    Google Scholar 

  • Rick, T. C., & Lockwood, R. (2012). Integrating paleobiology, archaeology, and history to inform biological conservation. Conservation Biology. doi:10.1111/j.1523-1739.2012.01920.x.

  • Rick, T. C., Erlandson, J. M., & Vellanoweth, R. L. (2001). Paleocoastal marine fishing on the Pacific coast of the Americas: perspectives from Daisy Cave, California. American Antiquity, 66, 595–613.

    Article  Google Scholar 

  • Searjantson, D. (2009). Birds. Cambridge: Cambridge University Press.

    Google Scholar 

  • Smith, M. L., & Glass, G. V. (1987). Research and evaluation in education and the social sciences. Needham Hieghts: Allyn and Bacon.

    Google Scholar 

  • Szabo, K. (2009). Molluscan remains from Fiji. In G. Clark & A. Anderson (Eds.), The early prehistory of Fiji (pp. 183–211). Canberra: Australia National University Press. Terra Australis No. 31.

    Google Scholar 

  • Tarcan, C. G. (2005). Counting sheep: fauna, contact, and colonialism at Zuni Pueblo, New Mexico, AD 1300 to 1900. Ph.D. Dissertation, Department of Archaeology, Simon Fraser University.

  • Thomas, D. H. (1978). The awful truth about statistics in archaeology. American Antiquity, 43, 231–244.

    Article  Google Scholar 

  • Valentine, K., Duffield, D. A., Patrick, L. E., Hatch, D. R., Butler, V. L., Hall, R. L., & Lehman, N. (2008). Ancient DNA reveals genotypic relationships among Oregon populations of the sea otter (Enhydra lutris). Conservation Genetics, 9, 933–938.

    Article  Google Scholar 

  • von den Driesch, A. (1976). A guide to the measurement of animal bones from archaeological sites. Cambridge: Harvard University Peabody Museum Bulletin No. 1.

    Google Scholar 

  • Winter, G. (2000). A comparative discussion of the notion of ‘validity’ in qualitative and quantitative research. The Qualitative report, 4, 3/4 http://www.nova.edu/ssss/QR/QR4-3/index.html. Accessed 3 January 2011.

  • Wolverton, S. (2002). Zooarchaeological evidence of prairie taxa in central Missouri during the mid-Holocene. Quaternary Research, 58, 200–204.

    Article  Google Scholar 

  • Wolverton, S. (2008). Harvest pressure and environmental carrying capacity: an ordinal-scale models of effects on ungulate prey. American Antiquity, 73, 179–199.

    Google Scholar 

  • Wolverton, M. L. (2009). Research design, hypothesis testing, and sampling. The Appraisal Journal, 77, 370–382.

    Google Scholar 

  • Wolverton, S., & Lyman, R. L. (Eds.). (2012). Conservation biology and applied zooarchaeology. Tucson: University of Arizona Press.

    Google Scholar 

  • Wolverton, S., Randklev, C. R., & Barker, A. (2011). Ethnobiology as a bridge between science and ethics: an applied paleozoological perspective. In E. N. Anderson, D. Pearsall, E. Hunn, & N. Turner (Eds.), Ethnobiology (pp. 115–132). New York: Wiley-Blackwell.

    Chapter  Google Scholar 

  • Yang, D. Y., Woiderski, J. R., & Driver, J. C. (2005). DNA analysis of archaeological rabbit remains from the American Southwest. Journal of Archaeological Science, 32, 567–578.

    Article  Google Scholar 

  • Zeder, M. A., & Lapham, H. A. (2010). Assessing the reliability of criteria used to identify postcranial bones in sheep, Ovis, and goats, Capra. Journal of Archaeological Science, 37, 2887–2905.

    Article  Google Scholar 

Download references

Acknowledgments

Thank you to Jon Driver and Lee Lyman for offering good ideas and for helping in assembling background literature. Thank you to Chris Darwent for not giving up on the Fryxell Award regarding Lee Lyman; I appreciate Chris’s, Virginia Butler’s, and Mike O’Brien’s organization of the session and the volume. Barney Venables taught me about QA and QC in the context of analytical environmental chemistry. Four reviewers provided helpful comments; thanks especially to Ken Gobalet and Torrey Rick. Finally, thanks to Lee for all of the help, support, and guidance over the years. Mass spectrum and peptide sequence data for Fig. 1 were generated with funding from NSF Archaeometry Technical Development grants nos. 0822196 and 0905020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steve Wolverton.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wolverton, S. Data Quality in Zooarchaeological Faunal Identification. J Archaeol Method Theory 20, 381–396 (2013). https://doi.org/10.1007/s10816-012-9161-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10816-012-9161-4

Keywords

Navigation