Skip to main content

Advertisement

Log in

Maternal non-Mendelian inheritance of a reduced lifespan? A hypothesis

  • Opinion
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Purpose

A negative correlation exists between advanced maternal age and reproduction. Current data suggest that this correlation is due to a decline in oocyte quality with respect to female age. Since a new individual is derived from the fusion of a single sperm and egg, we tested whether the quality of this material could influence the long-term physiological health of offspring, by examining whether a link between parental age and lifespan of offspring exists.

Methods

We requested a search from the Swedish demographic database POPUM 3 maintained by the University of Umeå, Sweden between years 1700 and 1900. Parameters requested included mothers’ and fathers’ age at gestation, the lifespan of the children, cause of death of children and the region of birth.

Results

Complete data was obtained for 30,512 children born to 12,725 mothers and fathers. Kaplan-Meier estimators demonstrated a strong relationship between mother’s age at gestation and the longevity of offspring. Extrinsic factors such as century of birth also had an effect on the data. The forward stepwise procedure on Cox’s model of proportional hazards suggested that most significant intrinsic factors were mother’s lifespan and mother’s age at gestation.

Conclusions

These data demonstrate that intrinsic and extrinsic factors influence the lifespan of children. Among intrinsic factors, mother’s lifespan and age at gestation had a significant influence on the data. The influence of intrinsic factors remained significant despite a strong extrinsic influence. We suggest that the influence of the mother on the lifespan of offspring is due to extra-genomic factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Aitken RJ, Clarkson JS, Fishel S. Generation of reactive oxygen species, lipid peroxidation, and human sperm function. Biol Reprod. 1989;41:183–97.

    Article  CAS  PubMed  Google Scholar 

  2. Alvarez G, Touchstone JC, Blasco L, Storey BT. Spontaneous lipid peroxidation and production of hydrogen peroxide and superoxide in human spermatozoa. Superoxide dismutase as major enzyme protectant against oxygen toxicity. J Androl. 1987;8:338–48.

    CAS  PubMed  Google Scholar 

  3. Andersen AN, Osler M. Birth dimensions, parental mortality, and mortality in early adult age: a cohort study of Danish men born in 1953. Int J Epidemiol. 2004;33:92–9.

    Article  PubMed  Google Scholar 

  4. Astolfi P, Zonta LA. Risks of preterm delivery and association with maternal age, birth order and fetal gender. Hum Reprod. 1999;14:2891–4.

    Article  CAS  PubMed  Google Scholar 

  5. Barker DJP, Eriksson JG, Forsen T, Osmond C. fetal origins of adult disease: strength of effects and biological basis. Int J Epidemiol. 2002;31:1235–9.

    Article  CAS  PubMed  Google Scholar 

  6. Bell AG. The duration of life and conditions associated with longevity. A study of the Hyde Genology. Washington D.C.: Genealogical Record Office; 1918.

    Google Scholar 

  7. Birky Jr CW. Uniparental inheritance of mitochondrial and chloroplast genes: mechanisms and evolution. Proc Natl Acad Sci U S A. 1995;92:11331–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Cogswell ME, Yip R. The influence of fetal and maternal factors on the distribution of birthweight. Semin Perinatol. 1995;19:222–40.

    Article  CAS  PubMed  Google Scholar 

  9. Cox DR. Regression models and life-tables. J R Stat Soc Ser B. 1972;34:187–220.

    Google Scholar 

  10. Crow JF. How much do we know about spontaneous human mutation rates? J Environ Mol Mutagen. 1993;21:122–9.

    Article  CAS  Google Scholar 

  11. Crow JF. The high spontaneous mutation rate: is it a health risk? Proc Natl Acad Sci U S A. 1997;94:8380–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Cummins JM. Mitochondria: potential roles in embryogenesis and nucleocytoplasmic transfer. Hum Reprod Update. 2001;7:217–28.

    Article  CAS  PubMed  Google Scholar 

  13. Delpisheh A, Brabin L, Attia E, Brabin BJ. Pregnancy late in life: a hospital-based study of birth outcomes. J Women’s Health. 2008;17:965–70.

    Article  Google Scholar 

  14. Eichenlaub-Ritter U, Wieczorek M, Lüke S, Seidel T. Age related changes in mitochondrial function and new approaches to study redox regulation in mammalian oocytes in response to age or maturation conditions. Mitochondrion. 2011;11:783–96.

    Article  CAS  PubMed  Google Scholar 

  15. García-Palomares S, Navarro S, Pertusa JF, Hermenegildo C, García-Pérez MA, Rausell F, et al. Delayed fatherhood in mice decreases reproductive fitness and longevity of offspring. Biol Reprod. 2009;80:343–9.

    Article  PubMed  Google Scholar 

  16. García-Palomares S, Pertusa JF, Miñarro J, García-Pérez MA, Hermenegildo C, Rausell F, et al. Long-term effects of delayed fatherhood in mice on postnatal development and behavioral traits of offspring. Biol Reprod. 2009;80:337–42.

    Article  PubMed  Google Scholar 

  17. Gavrilov LA, Gavrilova NNS. Parental age at conception and offspring longevity. Rev Clin Gerontol. 1997;7:5–12.

    Article  Google Scholar 

  18. Gavrilov LA, Gavrilova NS, Semenova VG, Evdokushkina GN, Krut’ko VN, Gavrilova AL, et al. Maternal age and lifespan of ofspring. Dokl Biol Sci. 1997;354:287–9.

    Google Scholar 

  19. Gougeon AN. The biological aspects of risks of infertility due to age: the female side. Rev Epidemiol Sante Publique. 2005;53(Spec No 2):2S37–45.

    PubMed  Google Scholar 

  20. Hajkova P. Epigenetic reprogramming—taking a lesson from the embryo. Curr Opin Cell Biol. 2010;22:342–50.

    Article  CAS  PubMed  Google Scholar 

  21. Hamatani T, Falco G, Carter MG, Akutsu H, Stagg CA, Sharov AA, et al. Age-associated alteration of gene expression patterns in mouse oocytes. Hum Mol Genet. 2004;13:2263–78.

    Article  CAS  PubMed  Google Scholar 

  22. Hassold T, Jacobs P. Trisomy in man. Annu Rev Genet. 1984;18:69–97.

    Article  CAS  PubMed  Google Scholar 

  23. Jacobsson B, Ladfors L, Milsom I. Advanced maternal age and adverse perinatal outcome. Obstet Gynecol. 2004;104:727–33.

    Article  PubMed  Google Scholar 

  24. Jolly M, Sehire N, Harris J, Robinson S, Regan I. The risks associated with pregnancy in women aged 35 years or over. Hum Reprod. 2000;15:2433–7.

    Article  CAS  PubMed  Google Scholar 

  25. Kaplan EL, Meier P. Nonparametric estimation from incomplete observations. J Am Stat Assoc. 1958;53:457–81.

    Article  Google Scholar 

  26. Keefe DL. Ageing and infertility in women. Med Health RI. 1997;80:403–5.

    CAS  Google Scholar 

  27. Kemkes-Grottenthaler A. Parental effects on offspring longevity–evidence from 17th to 19th century reproductive histories. Ann Hum Biol. 2004;31:139–58.

    Article  PubMed  Google Scholar 

  28. Khoshnood B, Wall S, Lee KS. Risk of low birth weight associated with advanced maternal age among four ethnic groups in the United States. Matern Child Health J. 2005;9:3–9.

    Article  PubMed  Google Scholar 

  29. Lansing AI. A transmissible, cumulative and reversible factor in aging. J Gerontol. 1947;2:228–39.

    Article  CAS  PubMed  Google Scholar 

  30. Lansing AI. Evidence for aging as a consequence of growth cessation. Proc Natl Acad Sci. 1948;34:304–10.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Lawlor DA, Mortensen L, Andersen AN. Mechanisms underlying the associations of maternal age with adverse perinatal outcomes: a sibling study of 264 695 Danish women and their firstborn offspring. Int J Epidemiol. 2011;40:1205–14.

    Article  PubMed  Google Scholar 

  32. Lee KS, Ferguson RM, Corpuz M, Gartner LM. Maternal age and incidence of low birth weight at term: a population study. Am J Obstet Gynecol. 1988;158:84–9.

    CAS  PubMed  Google Scholar 

  33. Linnane AW, Marzuki S, Ozawa T, Tanaka M. Mitochondrial DNA mutations as an important contributor to ageing and degenerative diseases. Lancet. 1989;1:642–5.

    Article  CAS  PubMed  Google Scholar 

  34. Margueron R, Reinberg D. Chromatin structure and the inheritance of epigenetic information. Nat Rev Genet. 2010;11:285–96.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Munné S, Cohen J, Grifo J, Sultan K, Alikani M, Tomkin G, et al. Implantation failure of morphologically normal human embryos is due largely to aneuploidy. Fertil Steril. 1995;64:382–91.

    PubMed  Google Scholar 

  36. Myrskylä M, Fenelon A. Maternal age and offspring adult health: evidence from the health and retirement study. Demography. 2012;49:1231–57.

    Article  PubMed  Google Scholar 

  37. Navot D, Drews MR, Bergh PA, Guzman I, Karstaedt A, Scott RT, et al. Age-related decline in female fertility is not due to diminished capacity of the uterus to sustain embryo implantation. Fertil Steril. 1994;61:97–101.

    CAS  PubMed  Google Scholar 

  38. Nelson SM, Telfer EE, Anderson RA. The ageing ovary and uterus: new biological insights. Hum Reprod Update. 2013;19:67–83.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Pembrey ME, Bygren LO, Kaati G, Edvinsson S, Northstone K, Sjöström M, et al. Sex-specific, male-line transgenerational responses in humans. Eur J Hum Genet. 2006;14:159–66.

    Article  PubMed  Google Scholar 

  40. Priest NK, Mackowiak B, Promislow DEL. The role of parental age effects on the evolution of aging. Evolution. 2002;56:927–35.

    Article  PubMed  Google Scholar 

  41. Smith KR, Mineau G, Garibotti G, Kerber R. Effects of childhood and middle-adulthood family conditions on later-life mortality: evidence from the Utah population database, 1850–2002. Soc Sci Med. 2009;68:1649–58.

    Article  PubMed  Google Scholar 

  42. Sutovsky P, Schatten G. Paternal contributions to the mammalian zygote: fertilization after sperm-egg fusion. Int Rev Cytol. 2000;195:1–65.

    Article  CAS  PubMed  Google Scholar 

  43. Tarín JJ. Aetiology of age-associated aneuploidy: a mechanism based on the ‘free radical theory of ageing’. Hum Reprod. 1995;10:1563–5.

    Article  PubMed  Google Scholar 

  44. Tarín JJ. Potential effects of age-associated oxidative stress on mammalian oocytes/embryos. Mol Hum Reprod. 1996;2:717–24.

    Article  PubMed  Google Scholar 

  45. Tarín JJ, Brines J, Cano A. Long-term effects of delayed parenthood. Hum Reprod. 1998;13:2371–6.

    Article  PubMed  Google Scholar 

  46. Tarín JJ, Gómez-Piquer V, Manzanedo C, Miñarro J, Hermenegildo C, Cano A. Long-term effects of delayed motherhood in mice on postnatal development and behavioural traits of offspring. Hum Reprod. 2003;18:1580–7.

    Article  PubMed  Google Scholar 

  47. Tarín JJ, Gómez-Piquer V, Rausell F, Navarro S, Hermenegildo C, Cano A. Delayed motherhood decreases life expectancy of mouse offspring. Biol Reprod. 2005;72:1336–43.

    Article  PubMed  Google Scholar 

  48. Titus S, Li F, Stobezki R, Akula K, Unsal E, Jeong K, et al. Impairment of BRCA1-related DNA double-strand break repair leads to ovarian aging in mice and humans. Sci Transl Med. 2013;5:172ra21.

    Article  PubMed  Google Scholar 

  49. Tobi EW, Lumey LH, Talens RP, Kremer D, Putter H, Stein AD, et al. DNA methylation differences after exposure to prenatal famine are common and timing- and sex-specific. Hum Mol Genet. 2009;18:4046–53.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Van Blerkom J. Mitochondria in human oogenesis and preimplantation embryogenesis: engines of metabolism, ionic regulation and developmental competence. Reproduction. 2004;128:269–80.

    Article  PubMed  Google Scholar 

  51. Wilding M, Dale B, Marino M, di Matteo L, Alviggi C, Pisaturo ML, et al. Mitochondrial aggregation patterns and activity in human oocytes and preimplantation embryos. Hum Reprod. 2001;16:909–17.

    Article  CAS  PubMed  Google Scholar 

  52. Wilding M, De Placido G, De Matteo L, Marino M, Alviggi C, Dale B. Chaotic mosaicism in human preimplantation embryos is correlated with a low mitochondrial membrane potential. Fertil Steril. 2003;79:340–6.

    Article  PubMed  Google Scholar 

  53. Wilding M, Di Matteo L, Dale B. The maternal age effect: a hypothesis based on oxidative phosphorylation. Zygote. 2005;13:317–23.

    Article  CAS  PubMed  Google Scholar 

  54. Yonemura I, Motoyama T, Hasekura H, Boettcher B. Cytoplasmic influence on the expression of nuclear genes affecting life span in Drosophila melanogaster. Heredity (Edinb). 1991;66:259–64.

    Article  Google Scholar 

  55. Zheng CJ, Byers B. Oocyte selection: a new model for the maternal-age dependence of Down syndrome. Hum Genet. 1992;90:1–6.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was self-funded. We thank Erik Törnlund and staff of the Demografiska Databasen, Umeå Universitet, S-901 87 Umeå, Sweden for their excellent database. We also thank Vincenzo Monfrecola for his help in the preparation of the work.

Conflicts of interest

We declare that no conflicts of interest are present.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Wilding.

Additional information

Capsule A demographic database shows a correlation between parental age and longevity of children in humans.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wilding, M., Coppola, G., De Icco, F. et al. Maternal non-Mendelian inheritance of a reduced lifespan? A hypothesis. J Assist Reprod Genet 31, 637–643 (2014). https://doi.org/10.1007/s10815-014-0222-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-014-0222-3

Keywords

Navigation