Skip to main content

Advertisement

Log in

Cadmium decreases the levels of glutathione and enhances the phytochelatin concentration in the marine dinoflagellate Lingulodinium polyedrum

  • V REDEALGAS WORKSHOP (RIO DE JANEIRO, BRAZIL)
  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The toxic effects of metals on the aquatic environment are documented and well known. Metals are able to unbalance the intracellular redox potential and, therefore, induce the oxidative stress in living organisms. In this study, the responses of glutathione [reduced (GSH) and oxidized (GSSG)] and the structurally GSH-related peptides phytochelatins 3 and 4 (PC3 and PC4) were examined in the marine dinoflagellate Lingulodinium polyedrum exposed to cadmium (Cd). A novel method for PC3 and PC4 synthesis is described here based on a Boc strategy, yielding peptides with purities higher than 97 %. Analytical detection of GSH, GSSG, PC3, and PC4 applying liquid chromatography-tandem mass spectrometry (LC-MS/MS) method had been developed and described as robust and accurate with a detection limit of nmol g−1 dry weight (DW) for PC3 and PC4. The intracellular levels of GSH and GSSG decreased dramatically over 24 and 48-h exposure to 18 μmol L−1 Cd. These decreases were followed by the enhancement of intracellular PC3 and PC4 levels, in which syntheses started to be detected after 2 and 8-h exposure, respectively. Moreover, the PC4/PC3 ratio reached its maximum over 24-h exposure, being 8 to 75-fold higher than the one observed for other microalgae. This seems to be an efficient strategy of L. polyedrum to be protected against Cd environment contamination, since PC4 has more chelating sites and is structurally more stable than PC2 and PC3, the most abundant for other microalgae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Agency for Toxic Substances and Disease Registry (ATSDR) (2004) Interaction profile for arsenic, cadmium, chromium and lead. Atlanta, GA, U.S. Department of Health and Human Services

    Google Scholar 

  • Agency for Toxic Substances and Disease Registry (ATSDR) (2014) Summary data for 2013 priority list of hazardous substances. Atlanta, GA, U.S. Department of Health and Human Services

    Google Scholar 

  • Arasimowicz-Jelonek M, Floryszak-Wieczorek J, Gwóźdź EA (2011) The message of nitric oxide in cadmium challenged plants. Plant Sci 181:612–620

    Article  CAS  PubMed  Google Scholar 

  • Branco D, Lima A, Almeida SF, Figueira E (2010) Sensitivity of biochemical markers to evaluate cadmium stress in the freshwater diatom Nitzschia palea (Kützing) W. Smith. Aquat Toxicol 99:109–117

    Article  CAS  PubMed  Google Scholar 

  • Bräutigam A, Wesenberg D, Preud'homme H, Schaumlöffel D (2010) Rapid and simple UPLC-MS/MS method for precise phytochelatin quantification in alga extracts. Anal Bioanal Chem 398:877–883

    Article  PubMed  Google Scholar 

  • Cardozo KHM, Guaratini T, Barros MP, Falcão VR, Tonon AP, Lopes NP, Campos S, Torres MA, Souza AO, Colepicolo P, Pinto E (2007) Metabolites from algae with economical impact. Comp Biochem Phys C 146:60–78

    Article  Google Scholar 

  • Cerqueira FM, da Cunha FM, Caldeira da Silva CC, Chausse B, Romano RL, Garcia CC, Colepicolo P, Medeiros MH, Kowaltowski AJ (2011) Long-term intermittent feeding, but not caloric restriction, leads to redox imbalance, insulin receptor nitration, and glucose intolerance. Free Radical Bio Med 51:1454–1460

    Article  CAS  Google Scholar 

  • Cobbett CS (2000) Phytochelatins and their roles in heavy metal detoxification. Plant Phys 123:825–832

    Article  CAS  Google Scholar 

  • dos Santos RW, Schmidt EC, de L Felix MR, Polo LK, Kreusch M, Pereira DT, Costa GB, Simioni C, Chow F, Ramlov F, Maraschin M, Bouzon ZL (2014) Bioabsorption of cadmium, copper and lead by the red macroalga Gelidium floridanum: physiological responses and ultrastructure features. Ecotox Environ Safe 105:80–89

    Article  CAS  Google Scholar 

  • Faller P, Kienzler K, Krieger-Liszkay A (2005) Mechanism of Cd2+ toxicity: Cd2+ inhibits photoactivation of photosystem II by competitive binding to the essential Ca2+ site. Biochim Biophys Acta - Bioenergetics 1706:158–164

    Article  CAS  Google Scholar 

  • Figueira E, Freitas R, Guasch H, Almeida SF (2014) Efficiency of cadmium chelation by phytochelatins in Nitzschia palea (Kützing) W. Smith. Ecotox 23:285–292

  • Fonti V, Beolchini F, Rocchetti L, Dell'Anno A (2015) Bioremediation of contaminated marine sediments can enhance metal mobility due to changes of bacterial diversity. Water Res 68:637–650

    Article  CAS  PubMed  Google Scholar 

  • Gekeler W, Grill E, Winnacker EL, Zenk MH (1989) Survey of the plant kingdom for the ability to bind heavy metals through phytochelatins. Z Naturforsch C 44:361–369

    CAS  Google Scholar 

  • Gressler V, Fujii M, Martins AP, Colepicolo P, Mancini J, Pinto E (2011) Biochemical composition of two red seaweed species grown on the Brazilian coast. J Sci Food Agr 91:1687–1692

    Article  CAS  Google Scholar 

  • Guillard RR, Ryther JH (1962) Studies of marine planktonic diatoms: I. Cyclotella nana Hustedt, and Detonula confervacea (Cleve) Gran. Can J Microbiol 8:229–239

  • Hossain MA, Piyatida P, da Silva JAT, Fujita M (2012) Molecular mechanism of heavy metal toxicity and tolerance in plants: central role of glutathione in detoxification of reactive oxygen species and methylglyoxal and in heavy metal chelation. J Bot. doi:10.1155/2012/872875

    Google Scholar 

  • Jia G, Aroor AR, Martinez-Lemus LA, Sowers JR (2015) Mitochondrial functional impairment in response to environmental toxins in the cardiorenal metabolic syndrome. Arch Toxicol 89:147–153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaiser E, Colescott RL, Bossinger CD, Cook PI (1970) Color test for detection of free terminal amino groups in the solid-phase synthesis of peptides. Anal Biochem 34:595–598

    Article  CAS  PubMed  Google Scholar 

  • Kováčik J, Klejdus B, Babula P, Hedbavny J (2016) Age affects not only metabolome but also metal toxicity in Scenedesmus quadricauda cultures. J Hazard Mater 306:58–66

    Article  PubMed  Google Scholar 

  • Kováčik J, Klejdus B, Babula P, Hedbavny J (2015) Nitric oxide donor modulates cadmium-induced physiological and metabolic changes in the green alga Coccomyxa subellipsoidea. Algal Res 8:45–52

    Article  Google Scholar 

  • Leitão MA, Cardozo KHM, Pinto E, Colepicolo P (2003) PCB-induced oxidative stress in the unicellular marine dinoflagellate Lingulodinium polyedrum. Arch Environ Con Toxicol 45:59–65

    Article  Google Scholar 

  • Loffredo C, Assunção NA, Gerhardt J, Miranda MTM (2009) Microwave-assisted solid-phase peptide synthesis at 60 °C: alternative conditions with low enantiomerization. J Pep Sci 15:808–817

    Article  CAS  Google Scholar 

  • Martins PLG, Marques LG, Colepicolo P (2015) Antioxidant enzymes are induced by phenol in the marine microalga Lingulodinium polyedrum. Ecotox Environ Safe 116:84–89

    Article  CAS  Google Scholar 

  • Mehra RK, Kodati VR, Abdullah R (1995) Chain length-dependent Pb(II) coordination in phytochelatins. Biochem Biophys Res Com 215:730–736

  • Mendes LF, Zambotti-Villela L, Colepicolo P, Marinho-Soriano E, Stevani CV, Yokoya NS (2013) Metal cation toxicity in the alga Gracilaria domingensis as evaluated by the daily growth rates in synthetic seawater. J Appl Phycol 25:1939–1947

    Article  CAS  Google Scholar 

  • Mendoza-Cózatl D, Loza-Tavera H, Hernández-Navarro A, Moreno-Sánchez R (2005) Sulfur assimilation and glutathione metabolism under cadmium stress in yeast, protists and plants. FEMS Microbiol Rev 29:653–671

    Article  PubMed  Google Scholar 

  • Mera R, Torres E, Abalde J (2014) Sulphate, more than a nutrient, protects the microalga Chlamydomonas moewusii from cadmium toxicity. Aquat Toxicol 148:92–103

    Article  CAS  PubMed  Google Scholar 

  • Mesko MF, Picoloto RS, Ferreira LR, Costa VC, Pereira CMP, Colepicolo P, Muller EI, Flores EMM (2015) Ultraviolet radiation combined with microwave-assisted wet digestion of Antarctic seaweeds for further determination of toxic elements by ICP-MS. J Anal Atom Spectrom 30:260–266

    Article  CAS  Google Scholar 

  • Micheli F, Levin N, Giakoumi S, Katsanevakis S, Abdulla A, Coll M, Fraschetti S, Kark S, Koutsoubas D, Mackelworth P, Maiorano L, Possingham HP (2013) Setting priorities for regional conservation planning in the Mediterranean Sea. PLoS One 8:e59038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morelli E, Cioni P, Posarelli M, Gabellieri E (2012) Chemical stability of CdSe quantum dots in seawater and their effects on a marine microalga. Aquat Toxicol 122-123:153–162

    Article  CAS  PubMed  Google Scholar 

  • Morelli E, Scarano G (2004) Copper-induced changes of non-protein thiols and antioxidant enzymes in the marine microalga Phaeodactylum tricornutum. Plant Sci 167:289–296

    Article  CAS  Google Scholar 

  • Okamoto OK, Colepicolo P (1998) Response of superoxide dismutase to pollutant metal stress in the marine dinoflagellate Gonyaulax polyedra. Comp Biochem Phys C 119:67–73

    Article  CAS  Google Scholar 

  • Okamoto OK, Shao LM, Hastings JW, Colepicolo P (1999) Acute and chronic effects of toxic metals on viability, encystment and bioluminescence in the dinoflagellate Gonyaulax polyedra. Comp Biochem Phys C 123:75–83

    CAS  Google Scholar 

  • Ogawa S, Yoshimura E (2012) Comparison of methanol and acetonitrile eluents for the quantitation of chelators specific to soft-metal ions by HPLC. J Chromatogr B 909:34–36

  • Pawlik-Skowronska B, Pirszel J, Brown MT (2007) Concentrations of phytochelatins and glutathione found in natural assemblages of seaweeds depend on species and metal concentrations of the habitat. Aquat Toxicol 83:190–199

    Article  CAS  PubMed  Google Scholar 

  • Petraglia A, de Benedictis M, Degola F, Pastore G, Calcagno M, Ruotolo R, Mengoni A, Sanità di Toppi L (2014) The capability to synthesize phytochelatins and the presence of constitutive and functional phytochelatin synthases are ancestral (plesiomorphic) characters for basal land plants. J Exp Bot 65:1153–1163

    Article  CAS  PubMed  Google Scholar 

  • Pflugmacher S, Wiencke C, Sandermann H (1999) Activity of phase I and phase II detoxication enzymes in Antarctic and Arctic macroalgae. Mar Environ Res 48:23–36

    Article  CAS  Google Scholar 

  • Pflugmacher S, Schröder P, Sandermann H (2000) Taxonomic distribution of plant glutathione S-transferases acting on xenobiotics. Phytochem 54:267–273

    Article  CAS  Google Scholar 

  • Pinto E, Carvalho AP, Cardozo KHM, Malcata FX, Anjos FM d, Colepicolo P (2011) Effects of heavy metals and light levels on the biosynthesis of carotenoids and fatty acids in the macroalgae Gracilaria tenuistipitata (var. liui Zhang & Xia). Rev Bras Farmacogn 21:349–354

  • Pinto E, Sigaud-Kutner TCS, Leitão MAS, Okamoto OK, Morse D, Colepicolo P (2003) Heavy metal–induced oxidative stress in algae. J Phycol 39:1008–1018

    Article  CAS  Google Scholar 

  • Pokora W, Baścik-Remisiewicz A, Tukaj S, Kalinowska R, Pawlik-Skowrońska B, Dziadziuszko M, Tukaj Z (2014) Adaptation strategies of two closely related Desmodesmus armatus (green alga) strains contained different amounts of cadmium: a study with light-induced synchronized cultures of algae. J Plant Phys 171:69–77

    Article  CAS  Google Scholar 

  • Rajamani S, Siripornadulsil S, Falcao V, Torres M, Colepicolo P, Sayre R (2007) Phycoremediation of heavy metals using transgenic microalgae. In: León R, Galván A, Fernández E (eds.), Transgenic Microalgae as Green Cell Factories. Springer, NY pp 99–109

  • Rajamani S, Torres M, Falcao V, Gray JE, Coury DA, Colepicolo P, Sayre R (2014) Noninvasive evaluation of heavy metal uptake and storage in micoralgae using a fluorescence resonance energy transfer-based heavy metal biosensor. Plant Phys 164:1059–1067

    Article  CAS  Google Scholar 

  • Rauser WE (1990) Phytochelatins. Annu Rev Biochem 59:61–86

    Article  CAS  PubMed  Google Scholar 

  • Remuzgo C, Oewel TS, Daffre S, Lopes TRS, Dyszy FH, Schreier S, Machado-Santelli GM, Machini MT (2014) Chemical synthesis, structure–activity relationship, and properties of shepherin I: a fungicidal peptide enriched in glycine-glycine-histidine motifs. Amino Acids 46:2573–2586

    Article  CAS  PubMed  Google Scholar 

  • Sigaud-Kutner TCS, Neto AMP, Pinto E, Colepicolo P (2005) Diel activities of antioxidant enzymes, photosynthetic pigments and malondialdehyde content in stationary-phase cells of Tetraselmis gracilis (Prasinophyceae). Aquat Bot 82:239–249

    Article  CAS  Google Scholar 

  • Smith CL, Steele JE, Stauber JL, Jolley DF (2014) Copper-induced changes in intracellular thiols in two marine diatoms: Phaeodactylum tricornutum and Ceratoneis closterium. Aquat Toxicol 156:211–220

    Article  CAS  PubMed  Google Scholar 

  • Souza MP, Tavares MFM, Miranda MTM (2004) Racemization in stepwise solid-phase peptide synthesis at elevated temperatures. Tetrahedron 60:4671–4681

    Article  CAS  Google Scholar 

  • Stohs SJ, Bagchi D (1995) Oxidative mechanisms in the toxicity of metal ions. Free Radical Bio Med 18:321–336

    Article  CAS  Google Scholar 

  • Suárez C, Torres E, Pérez-Rama M, Herrero C, Abalde J (2010) Cadmium toxicity on the freshwater microalga Chlamydomonas moewusii Gerloff: biosynthesis of thiol compounds. Environ Toxicol Chem 29:2009–2015

    PubMed  Google Scholar 

  • Kumar SK, Dahms HU, Won EJ, Lee JS, Shin KH (2015) Microalgae—a promising tool for heavy metal remediation. Ecotox Environ Safe 113:329–352

    Article  Google Scholar 

  • Tonon AP, Oliveira MC, Marinho-Soriano E, Colepicolo P (2011) Absorption of metals and characterization of chemical elements present in three species of Gracilaria (Gracilariaceae) Greville: a genus of economical importance. Rev Bras Farmacogn 21:355–360

    Article  CAS  Google Scholar 

  • Torres FAE, Passalacqua TG, Velasquez AMA, de Souza RA, Colepicolo P, Graminha MAS (2014) New drugs with antiprotozoal activity from marine algae: a review. Rev Bras Farmacogn 24:265–276

    Article  CAS  Google Scholar 

  • Varanda LM, Miranda MTM (1997) Solid-phase peptide synthesis at elevated temperatures: a search for an optimized synthesis condition of unsulfated cholecystokinin-12. J Pep Res 50:102–108

    Article  CAS  Google Scholar 

  • Volland S, Schaumlöffel D, Dobritzsch D, Krauss GJ, Lütz-Meindl U (2013) Identification of phytochelatins in the cadmium-stressed conjugating green alga Micrasterias denticulata. Chemosphere 91:448–454

    Article  CAS  PubMed  Google Scholar 

  • World Health Organization (WHO) (2010) Exposure to cadmium: a major public health concern. Switzerland, Public Health and Environment, Geneva

    Google Scholar 

  • Worms I, Simon DF, Hassler CS, Wilkinson KJ (2006) Bioavailability of trace metals to aquatic microorganisms: importance of chemical, biological and physical processes on biouptake. Biochimie 88:1721–1731

    Article  CAS  PubMed  Google Scholar 

  • Yokoya NS, Necchi O, Martins AP, Gonzales SF, Plastino EM (2007) Growth responses and photosynthetic characteristics of wild and phycoerythrin-deficient strains of Hypnea musciformis (Rhodophyta). J Appl Phycol 19:197–205

    Article  CAS  Google Scholar 

  • Zhang W, Tan NG, Li SF (2014) NMR-based metabolomics and LC-MS/MS quantification reveal metal-specific tolerance and redox homeostasis in Chlorella vulgaris. Mol BioSys 10:149–160

    Article  CAS  Google Scholar 

  • Zenk MH (1996) Heavy metal detoxification in higher plants—a review. Gene 179:21–30

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the financial and technical support during this study from the following institutions and people: Ministério de Ciência, Tecnologia e Inovação, CNPq, NAP-Biodiversidade Marinha, INCT-Redoxoma, and Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) 10/50193-1 to PC and 12/09068-4 to MTM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonardo Zambotti-Villela.

Electronic supplementary material

ESM 1

(DOC 122 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Romano, R.L., Liria, C.W., Machini, M.T. et al. Cadmium decreases the levels of glutathione and enhances the phytochelatin concentration in the marine dinoflagellate Lingulodinium polyedrum . J Appl Phycol 29, 811–820 (2017). https://doi.org/10.1007/s10811-016-0927-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-016-0927-z

Keywords

Navigation