Skip to main content
Log in

Production of crocetin in transgenic Chlorella vulgaris expressing genes crtRB and ZCD1

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Crocetin is one of the major active ingredients of the rare medicinal herb saffron (Crocus sativus L.), also known as crocus. Crocetin has a wide range of effects including antitumor, anticancer, antioxidant, and antiatherosclerotic activity. Crocetin is currently only obtained via extraction from crocus stigmas, with limited yields. This study developed a new method of production of crocetin from genetically engineered Chlorella vulgaris, a unicellular, fast-growing, and heterotrophically cultured green microalga. A plant expression vector carrying the genes crtRB and ZCD1, which encode enzymes controlling critical steps in crocetin biosynthesis, was introduced into C. vulgaris using the Agrobacterium tumefaciens-mediated transformation method. After hygromycin screening, resistant C. vulgaris strains were achieved. Polymerase chain reaction amplification confirmed that the crtRB and ZCD1 were successfully integrated into the C. vulgaris genome. High-performance liquid chromatography analysis of methanol extraction showed that the transgenic C. vulgaris was able to produce crocetin, while wild-type C. vulgaris was not. These results strongly suggest that introducing crtRB and ZCD1 into C. vulgaris can successfully produce crocetin. This is a new method of crocetin production in C. vulgaris to compensate for the shortage of crocetin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ahmad AS, Ansari MA, Ahmad M, Saleem S, Yousuf S, Hoda MN, Islam F (2005) Neuroprotection by crocetin in a hemi-parkinsonian rat model. Pharmacol Biochem Behav 81:805–813

    Article  CAS  PubMed  Google Scholar 

  • Alavizadeh SH, Hosseinzadeh H (2014) Bioactivity assessment and toxicity of crocin: a comprehensive review. Food Chem Toxicol 64:65–80

    Article  CAS  PubMed  Google Scholar 

  • Bathaie SZ, Hoshyar R, Miri H, Sadeghizadeh M (2013) Anticancer effects of crocetin in both human adenocarcinoma gastric cancer cells and rat model of gastric cancer. Biochem Cell Biol 91:397–403

    Article  CAS  PubMed  Google Scholar 

  • Bouvier F, Suire C, Mutterer J, Camara B (2003) Oxidative remodeling of chromoplast carotenoids: identification of the carotenoid dioxygenase CsCCD and CsZCD genes involved in Crocus secondary metabolite biogenesis. Plant Cell 15:47–62

  • Bundock P, den Dulk-Ras A, Beijersbergen A, Hooykaas PJ (1995) Trans-kingdom T-DNA transfer from Agrobacterium tumefaciens to Saccharomyces cerevisiae. Embo J 14:3206–14

  • Cervantes-Cervantes M, Gallagher CE, Zhu C, Wurtzel ET (2006) Maize cDNAs expressed in endosperm encode functional farnesyl diphosphate synthase with geranylgeranyl diphosphate synthase activity. Plant Physiol 141:220–231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen F, Jiang Y (eds) (2001) Algae and their biotechnological potential. Kluwer Academic Publishers, Dordrecht, 316 pp

    Google Scholar 

  • Chen SA, Wang X, Zhao B, Yuan X, Wang Y (2003) Production of crocin using Crocus sativus callus by two-stage culture system. Biotechnol Lett 25:1235–1238

    Article  CAS  PubMed  Google Scholar 

  • Cheng RB, Ma RJ, Li K, Rong H, Lin XZ, Wang ZK, Yang SJ, Ma Y (2012) Agrobacterium tumefaciens mediated transformation of marine microalgae Schizochytrium. Microbiol Res 167:179–186

    Article  CAS  PubMed  Google Scholar 

  • Dhar A, Mehta S, Dhar G, Dhar K, Banerjee S, Van Veldhuizen P, Campbell DR, Banerjee SK (2009) Crocetin inhibits pancreatic cancer cell proliferation and tumor progression in a xenograft mouse model. Mol Cancer Ther 8:315–323

    Article  CAS  PubMed  Google Scholar 

  • Frusciante S, Diretto G, Bruno M, Ferrante P, Pietrella M, Prado-Cabrero A, Rubio-Moraga A, Beyer P, Gomez-Gomez L, Al-Babili S, Giuliano G (2014) Novel carotenoid cleavage dioxygenase catalyzes the first dedicated step in saffron crocin biosynthesis. Proc Natl Acad Sci U S A 111:12246–12251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hempel N, Petrick I, Behrendt F (2012) Biomass productivity and productivity of fatty acids and amino acids of microalgae strains as key characteristics of suitability for biodiesel production. J Appl Phycol 24:1407–1418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Higashino S, Sasaki Y, Giddings JC, Hyodo K, Sakata SF, Matsuda K, Horikawa Y, Yamamoto J (2014) Crocetin, a carotenoid from Gardenia jasminoides Ellis, protects against hypertension and cerebral thrombogenesis in stroke-prone spontaneously hypertensive rats. Phytother Res 28:1315–1319

    Article  CAS  PubMed  Google Scholar 

  • Ho SH, Ye X, Hasunuma T, Chang JS, Kondo A (2014) Perspectives on engineering strategies for improving biofuel production from microalgae—A critical review. Biotechnol Adv 32:1448–1459

    Article  CAS  PubMed  Google Scholar 

  • Hsu JD, Chou FP, Lee MJ, Chiang HC, Lin YL, Shiow SJ, Wang CJ (1999) Suppression of the TPA-induced expression of nuclear-protooncogenes in mouse epidermis by crocetin via antioxidant activity. Anticancer Res 19:4221–4227

    CAS  PubMed  Google Scholar 

  • Huang J, Xia J, Jiang W, Li Y, Li J (2015) Biodiesel production from microalgae oil catalyzed by a recombinant lipase. Bioresour Technol 180C:47–53

    Article  Google Scholar 

  • Koshiba T, Saito E, Ono N, Yamamoto N, Sato M (1996) Purification and properties of flavin- and molybdenum-containing aldehyde oxidase from coleoptiles of maize. Plant Physiol 110:781–789

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li N, Lin G, Kwan YW, Min ZD (1999) Simultaneous quantification of five major biologically active ingredients of saffron by high-performance liquid chromatography. J Chromatogr A 849:349–355

    Article  CAS  PubMed  Google Scholar 

  • Li M, Gan Z, Cui Y, Shi C, Shi X (2013) Structure and function characterization of the phytoene desaturase related to the lutein biosynthesis in Chlorella protothecoides CS-41. Mol Biol Rep 40:3351–3361

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Gerken H, Huang J, Chen F (2013) Engineering of an endogenous phytoene desaturase gene as a dominant selectable marker for Chlamydomonas reinhardtii transformation and enhanced biosynthesis of carotenoids. Process Biochem 48:788–795

    Article  CAS  Google Scholar 

  • Lu Y, Jiang P, Liu S, Gan Q, Cui H, Qin S (2010) Methyl jasmonate- or gibberellins A3-induced astaxanthin accumulation is associated with up-regulation of transcription of beta-carotene ketolase genes (bkts) in microalga Haematococcus pluvialis. Bioresour Technol 101:6468–6474

    Article  CAS  PubMed  Google Scholar 

  • Mir JI, Ahmed N, Wani SH, Rashid R, Mir H, Sheikh MA (2010) In vitro development of microcorms and stigma like structures in saffron (Crocus sativus L.). Physiol Mol Biol Plants 16:369–373

    Article  PubMed  PubMed Central  Google Scholar 

  • Moraga AR, Nohales PF, Perez JA, Gomez-Gomez L (2004) Glucosylation of the saffron apocarotenoid crocetin by a glucosyltransferase isolated from Crocus sativus stigmas. Planta 219:955–966

    Article  CAS  PubMed  Google Scholar 

  • Muhlroth A, Li K, Rokke G, Winge P, Olsen Y, Hohmann-Marriott MF, Vadstein O, Bones AM (2013) Pathways of lipid metabolism in marine algae, co-expression network, bottlenecks and candidate genes for enhanced production of EPA and DHA in species of Chromista. Mar Drugs 11:4662–4697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niu YF, Zhang MH, Xie WH, Li JN, Gao YF, Yang WD, Liu JS, Li HY (2011) A new inducible expression system in a transformed green alga, Chlorella vulgaris. Genet Mol Res 10:3427–3434

    Article  CAS  PubMed  Google Scholar 

  • Ochiai T, Shimeno H, Mishima K, Iwasaki K, Fujiwara M, Tanaka H, Shoyama Y, Toda A, Eyanagi R, Soeda S (2007) Protective effects of carotenoids from saffron on neuronal injury in vitro and in vivo. Biochim Biophys Acta 1770:578–584

    Article  CAS  PubMed  Google Scholar 

  • Radakovits R, Jinkerson RE, Darzins A, Posewitz MC (2010) Genetic engineering of algae for enhanced biofuel production. Eukaryot Cell 9:486–501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rubio A, Rambla JL, Santaella M, Gomez MD, Orzaez D, Granell A, Gomez-Gomez L (2008) Cytosolic and plastoglobule-targeted carotenoid dioxygenases from Crocus sativus are both involved in beta-ionone release. J Biol Chem 283:24816–24825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seinen W, Vos JG, Brands R, Hooykaas H (1979) Lymphocytotoxicity and immunosuppression by organotin compounds. Suppression of graft-versus-host reactivity, blast transformation, and E-rosette formation by di-n-butyltindichloride and di-n-octyltindichloride. Immunopharmacology 1:343–55

  • Shen XC, Qian ZY, Wang YJ, Duan JA (2009) Crocetin attenuates norepinephrine-induced cytotoxicity in primary cultured rat cardiac myocytes by antioxidant in vitro. J Asian Nat Prod Res 11:417–425

    Article  CAS  PubMed  Google Scholar 

  • Stephens E, Ross IL, King Z, Mussgnug JH, Kruse O, Posten C, Borowitzka MA, Hankamer B (2010) An economic and technical evaluation of microalgal biofuels. Nat Biotech 28:126–128

    Article  CAS  Google Scholar 

  • Talebi AF, Tohidfar M, Tabatabaei M, Bagheri A, Mohsenpor M, Mohtashami SK (2013) Genetic manipulation, a feasible tool to enhance unique characteristic of Chlorella vulgaris as a feedstock for biodiesel production. Mol Biol Rep 40:4421–4428

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Yan J, Xi L, Qian Z, Wang Z, Yang L (2012) Protective effect of crocetin on hemorrhagic shock-induced acute renal failure in rats. Shock 38:63–67

    Article  CAS  PubMed  Google Scholar 

  • Xi L, Qian Z, Xu G, Zheng S, Sun S, Wen N, Sheng L, Shi Y, Zhang Y (2007) Beneficial impact of crocetin, a carotenoid from saffron, on insulin sensitivity in fructose-fed rats. J Nutr Biochem 18:64–72

    Article  CAS  PubMed  Google Scholar 

  • Xiao HB, Wang L, Yan C, Xu Y, Chen F, Lin T (2007) Transgenic tobacco expressing the crocus CsZCD gene showed the production of crocetin. China Biotechnol 27(6):51–55 (in Chinese with English abstract)

    CAS  Google Scholar 

  • Yang R, Vernon K, Thomas A, Morrison D, Qureshi N, Van Way CR (2011) Crocetin reduces activation of hepatic apoptotic pathways and improves survival in experimental hemorrhagic shock. JPEN J Parenter Enteral Nutr 35:107–113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshino F, Yoshida A, Umigai N, Kubo K, Lee MC (2011) Crocetin reduces the oxidative stress induced reactive oxygen species in the stroke-prone spontaneously hypertensive rats (SHRSPs) brain. J Clin Biochem Nutr 49:182–187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng S, Qian Z, Tang F, Sheng L (2005) Suppression of vascular cell adhesion molecule-1 expression by crocetin contributes to attenuation of atherosclerosis in hypercholesterolemic rabbits. Biochem Pharmacol 70:1192–1199

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Prof. Gerhard Sandmann and Dr. Norihiko Misawa for providing plasmid of pACCAR25ΔcrtX. This research project was financially supported by the Public Science and Technology Research Funds Projects of Ocean (201305022), Xiamen Southern Oceanographic Center funds (No.14GZP021NF21, No. 14CZP028HJ02), and Special Funds for Technical Development of Scientific Research Institutes (2012EG149243).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangzhi Lin.

Additional information

Liuying Wang and Lijuan He contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

Comparison of the predicted amino acid sequences of ZCD1 and CsZCD. Different amino acids are indicated with gray backgrounds. (DOC 26 kb)

Fig. S2

Enzymatic assays of ZCD1 and CCD2 in E.coli. (a) ZCD1 and CCD2 expressed in E. coli harboring the plasmid pACCAR25ΔcrtX, which accumulates zeaxanthin. Plasmid pACCAR25ΔcrtX was co-transformed into E. coli DH5α with and without empty vector pUC19, pUC19-ZCD1 or pUC19-CCD2, respectively. Induced for 48 h at 28 °C with 0.5 mM IPTG, the bacterium solution of ZCD1 and CCD2-expressing were discolored, compared with the ones of expressing pACCAR25ΔcrtX or empty vector pUC19. (b) HPLC analysis of acetone extracts of E. coli. (GIF 44 kb)

High resolution image (TIFF 1949 kb)

Fig. S3

Screening of positive clones of Chlorella vulgaris from Agrobacterium tumefaciens-mediated transformation (a) C. vulgaris protoplasts were coated on the hygromycin selective plates. (b) and (c) C. vulgaris protoplasts after cocultivation with A. tumefaciens strains of EHA105 and LBA4404 that harbored the expression vector pCAMBIA1302-crtRB-ZCD1 were coated on the hygromycin selective plates. (GIF 133 kb)

High resolution image (TIFF 7472 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lou, S., Wang, L., He, L. et al. Production of crocetin in transgenic Chlorella vulgaris expressing genes crtRB and ZCD1 . J Appl Phycol 28, 1657–1665 (2016). https://doi.org/10.1007/s10811-015-0730-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-015-0730-2

Keywords

Navigation