Skip to main content
Log in

Genetic manipulation, a feasible tool to enhance unique characteristic of Chlorella vulgaris as a feedstock for biodiesel production

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Developing a reliable technique to transform unicellular green algae, Chlorella vulgaris, could boost potentials of using microalgae feedstock in variety of applications such as biodiesel production. Volumetric lipid productivity (VLP) is a suitable variable for evaluating potential of algal species. In the present study, the highest VLP level was recorded for C. vulgaris (79.08 mg l−1 day−1) followed by 3 other strains studied; C. emersonii, C. protothecoides, and C. salina by 54.41, 45 and 18.22 mg l−1day−1, respectively. Having considered the high productivity of C. vulgaris, it was selected for the preliminary transformation experiment through micro-particle bombardment. Plasmid pBI 121, bearing the reporter gene under the control of CaMV 35S promoter and the kanamycin marker gene, was used in cells bombardment. Primary selection was done on a medium supplemented by 50 mg l−1 kanamycin. After several passages, the survived cells were PCR-tested to confirm the stability of transformation and then were found to exhibit β-glucuronidase (GUS) activity in comparison with the control cells. Southern hybridization of npt II probe with genomic DNA revealed stable integration of the cassette in three different positions in the genome. The whole process was successfully implemented as a pre-step to transform the algal cells by genes involved in lipid production pathway which will be carried out in our future studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Specht E, Miyake-Stoner S, Mayfield S (2010) Micro-algae come of age as a platform for recombinant protein production. Biotechnol Lett 32:1373–1383

    Article  PubMed  CAS  Google Scholar 

  2. León-Bañares R, González-Ballester D, Galván A, Fernández E (2004) Transgenic microalgae as green cell-factories. Trends Biotechnol 22:45–52

    Article  PubMed  Google Scholar 

  3. Phang SM, Chu WL (2004) The University of Malaya Algae Culture Collection (UMACC) and potential applications of a unique Chlorella from the collection. Japanese J Phycol 52:221–224

    Google Scholar 

  4. Radakovits R, Jinkerson RE, Darzins A, Posewitz MC (2010) Genetic engineering of algae for enhanced biofuel production. Eukaryotic Cell 9:486–501

    Article  PubMed  CAS  Google Scholar 

  5. Kruse O, Hankamer B (2010) Microalgal hydrogen production. Curr Opin Biotechnol 21:238–243

    Article  PubMed  CAS  Google Scholar 

  6. Sivakumar G, Vail DR, Xu J, Burner DM, Lay JO, Ge X, Weathers PJ (2010) Bioethanol and biodiesel: alternative liquid fuels for future generations. Eng Life Sci 10:8–18

    Article  CAS  Google Scholar 

  7. Tabatabaei M, Tohidfar M, Jouzani GS, Safarnejad M, Pazouki M (2011) Biodiesel production from genetically engineered microalgae: future of bioenergy in Iran. Renew Sustain Energy Rev 15:1918–1927

    Article  CAS  Google Scholar 

  8. Cheng Y, Zhou W, Gao C, Lan K, Gao Y, Wu Q (2009) Biodiesel production from Jerusalem artichoke (Helianthus tuberosus L.) tuber by heterotrophicmicroalgae Chlorella protothecoides. J Chem Technol Biotechnol 84:777–781. doi:10.1002/jctb.2111

    Article  CAS  Google Scholar 

  9. Olivieri G, Marzocchella A, Andreozzi R, Pintob G, Polliob A (2011) Biodiesel production from Stichococcus strains at laboratory scale. J Chem Technol Biotechnol 86:776–783. doi:10.1002/jctb.2586

    Article  CAS  Google Scholar 

  10. Carvalho J′unior RM, Vargas JVC, Ramos LP, Marinoa CEB, Torresc JCL (2011) Microalgae biodiesel via in situmethanolysis. J Chem Technol Biotechnol 286:1418–1427. doi:0.1002/jctb.2652

    Article  Google Scholar 

  11. Sasi D, Mitra P, Vigueras A, Hill GA (2011) Growth kinetics and lipid production using Chlorella vulgaris in a circulating loop photobioreactor. J Chem Technol Biotechnol 86:875–880. doi:10.1002/jctb.2603

    Article  CAS  Google Scholar 

  12. Elumalai S, Prakasam V, Selvarajan R (2011) Optimization of abiotic conditions suitable for the production of biodiesel from Chlorella vulgaris. Indian J Sci Technol 4:91–97

    CAS  Google Scholar 

  13. Mallick N, Mandal S, Singh AK, Bishai M, Dash A (2011) Green microalga Chlorella vulgaris as a potential feedstock for biodiesel. J Chem Technol Biotechnol 87:137–145. doi:10.1002/jctb.2694

    Article  Google Scholar 

  14. Work VH, Radakovits R, Jinkerson RE, Meuser JE, Elliott LG, Vinyard DJ, Laurens LM, Dismukes GC, Posewitz MC (2010) Increased lipid accumulation in the Chlamydomonas reinhardtii sta7-10 starchless isoamylase mutant and increased carbohydrate synthesis in complemented strains. Eukaryot Cell 9:1251–1261. doi:10.1128/EC.00075-10

    Article  PubMed  CAS  Google Scholar 

  15. Siaut M, Cuiné S, Cagnon C, Fessler B, Nguyen M, Carrier P, Beyly A, Beisson F, Triantaphylidès C, Li-Beisson Y, Peltier G (2011) Oil accumulation in the model green alga Chlamydomonas reinhardtii: characterization, variability between common laboratory strains and relationship with starch reserves. BMC Biotechnol 11:7

    Article  PubMed  CAS  Google Scholar 

  16. Talebi AF, Mohtashami SK, Tabatabaei M, Tohidfar M, Bagheri A, Zeinalabedini M, Hadavand H, Mirzajanzadeh M, Mlekzadeh Shafarudi S, Bakhtiari S (2013) Fatty acids profiling; a selective criterion for screening microalgae strains for biodiesel production. Algal Res. doi:10.1016/j.algal.2013.04.003

  17. Shi X, Zhang X, Chen F (2000) Heterotrophic production of biomass and lutein by Chlorella protothecoides on various nitrogen sources. Enzyme Microb Technol 27:312–318

    Article  PubMed  CAS  Google Scholar 

  18. Liang Y, Sarkany N, Cui Y (2009) Biomass and lipid productivities of Chlorella vulgaris under autotrophic, heterotrophic and mixotrophic growth conditions. Biotechnol Lett 31:1043–1049

    Article  PubMed  CAS  Google Scholar 

  19. Shen Y, Yuan W, Pei Z, Mao E (2010) Heterotrophic culture of Chlorella protothecoides in various nitrogen sources for lipid production. Appl Biochem Biotechnol 160:1674–1684

    Article  PubMed  CAS  Google Scholar 

  20. Boynton JE, Gillham NW, Harris EH, Hosler JP, Johnson AM (1988) Chloroplast transformation in Chlamydomonas with high velocity microprojectiles. Science 240:1534–1538

    Article  PubMed  CAS  Google Scholar 

  21. Rasala BA, Mayfield SP (2010) The microalga Chlamydomonas reinhardtii as a platform for the production of human protein therapeutics. Bioeng Bugs 2:50–54

    Article  Google Scholar 

  22. Shimogawara K, Fujiwara S, Grossman A, Usuda H (1998) High-efficiency transformation of Chlamydomonas reinhardtii by electroporation. Genetics 148:1821–1828

    PubMed  CAS  Google Scholar 

  23. Hayashi M, Hirono M, Kamiya R (2001) Recovery of flagellar dynein function in a Chlamydomonas actin/dynein-deficient mutant upon introduction of muscle actin by electroporation. Cell Motil Cytoskeleton 49:146–153

    Article  PubMed  CAS  Google Scholar 

  24. Gressel J (2008) Transgenics are imperative for biofuel crops. Plant Sci 174:246–263

    Article  CAS  Google Scholar 

  25. Jayasankar R, Valsala KK (2008) Influence of different concentrations of sodium bicarbonate on growth rate and chlorophyll content of Chlorella salina. J Mar Biol Assoc India 50:74–78

    Google Scholar 

  26. Rajakumar PD (2009) Genetic transformation of Chlorella vulgaris (chlorophyta). MSc Thesis. University of Malaya, Kuala Lumpur, p 119

  27. Bligh EG, Dyer WJ (1995) A rapid method for total lipid extraction and purification. Can J Biochem Physiol 37:911–917

    Article  Google Scholar 

  28. Ashton WD (1972) The logit transformation with special reference to its uses in bioassay. Hafner Publication Corporation, New York

    Google Scholar 

  29. Jiang P, Qin S, Tseng CK (2002) Expression of hepatitis B surface antigen gene (HBsAg) in Laminaria japonica (Laminariales, Phaeophyta). Chin Sci Bull 47:1438–1440

    Article  CAS  Google Scholar 

  30. Maniatis T, Fritsch EF, Sambrook J (1982) Molecular cloning, a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  31. Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901–3907

    PubMed  CAS  Google Scholar 

  32. Francisco EC, Neves DB, Jacob Lopes E, Franco TT (2010) Microalgae as feedstock for biodiesel production: carbon dioxide sequestration, lipid production and biofuel quality. J Chem Technol Biotechnol Adv 85:395–403

    Article  CAS  Google Scholar 

  33. Rodolfi L, Zittelli GC, Bassi N, Padovani G, Biondi N, Bonini G, Tredici MR (2009) Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol Bioeng 102:100–112

    Article  PubMed  CAS  Google Scholar 

  34. Griffiths MJ, Harrison STL (2009) Lipid productivity as a key characteristic for choosing algal species for biodiesel production. J Appl Phycol 21:493–507

    Article  CAS  Google Scholar 

  35. Hawkins RL, Nakamura M (1999) Expression of human growth hormone by the Eukaryotic Alga, Chlorella. Curr Microbiol 38:335–341

    Article  PubMed  CAS  Google Scholar 

  36. Kim DH, Kim YT, Cho JJ, Bae JH, Hur SB, Hwang I, Choi TJ (2002) Stable integration and functional expression of flounder growth hormone gene in transformed microalga, Chlorella ellipsoidea. Mar Biotechnol 4:63–73

    Article  PubMed  CAS  Google Scholar 

  37. El-Sheekh MM (1999) Stable transformation of intact cells of Chlorella kessleri with high velocity microprojectiles. Biol Plant 42:209–216

    Article  CAS  Google Scholar 

  38. Gan SY (2005) Development of a genetic transformation system for Gracilaria changii (Rhodophyta). PhD Thesis. Degree of Doctor of Philosophy. University of Malaya, Kuala Lumpur, p 238

  39. Chow KC, Tung WL (1999) Electrotransformation of Chlorella vulgaris. Plant Cell Rep 18:778–780

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would also like to thank Agricultural Biotechnology Research Institute of Iran (ABRII) and Biofuel Research Team (BRTeam) for financing this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meisam Tabatabaei.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Talebi, A.F., Tohidfar, M., Tabatabaei, M. et al. Genetic manipulation, a feasible tool to enhance unique characteristic of Chlorella vulgaris as a feedstock for biodiesel production. Mol Biol Rep 40, 4421–4428 (2013). https://doi.org/10.1007/s11033-013-2532-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-013-2532-4

Keywords

Navigation