Skip to main content
Log in

Acute and subchronic safety assessment of Porphyridium purpureum biomass in the rat model

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Porphyridium purpureum biomass was assessed for its acute and subchronic safety in albino Wistar rats and for its use as animal feed/human food application. P. purpureum contained 29.9 % protein, 7.99 % lipid, and 2.98 % phycoerythrin on dry basis. Polyunsaturated fatty acids constituted >50 % of the total fatty acids (53.9 % w/w), with eicosapentaenoic acid as the predominant ω3 (21.9 %) and arachidonic acid as the predominant ω6 fatty acid (15.7 %) with an overall ω6/ω3 ratio of 0.42. The essential amino acids (EAAs) constituted 37.97 % (w/w) of proteins with leucine as the predominant amino acid (10.99 %). The EAA index was similar to casein and soybean proteins. Water absorption capacity (WAC; 3.86 ± 0.01 g water g−1 biomass) and oil absorption capacity (OAC; 3.57 ± 0.04 g oil g−1 biomass) were six times higher compared to the basal diet (WAC 0.66 ± 0.007 g water g−1 feed and OAC 0.57 ± 0.02 g oil g−1feed). The acute toxicity study showed that the biomass was safe at acute doses and LD50 exceeded 5.0 g kg−1 body weight, the highest dose used in the study. In a subchronic study, rats were fed a diet containing 0, 2.5, 5.0, 7.5, and 10.0 % levels (w/w) for a period of 13 weeks. The biomass fortification did not induce any untoward changes in physiology such as body weight gain, relative organ weights, histopathology, and hematological and serum biochemical indices. However, supplementation of P. purpureum biomass resulted in decreased serum cholesterol and triglyceride levels compared to control groups indicating its high nutritional value.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Association of Official Analytical Chemists (AOAC) (1997). Official methods of analysis, 16th edn, 3rd revision. Association of Official Analytical Chemists, Washington DC, USA. 1115 pp

  • Association of Official Analytical Chemists (AOAC) (2006). Method 975.03 B (b): Metals in plants and pet foods atomic absorption spectrophotometric method. Association of Official Analytical Chemists, Washington, DC

  • Baethgen WE, Alley MM (1989) A manual colorimetric procedure for measuring ammonium nitrogen in soil and plant Kjeldahl digests. Commun Soil Sci Plant Anal 20:961–969

    Article  CAS  Google Scholar 

  • Becker EW (1994) Microalgae: biotechnology and microbiology. Cambridge University Press, Cambridge, 293 pp

    Google Scholar 

  • Becker W (2004) Microalgae in human and animal nutrition. In: Richmond A (ed) Handbook of microalgal culture: biotechnology and applied phycology. Blackwell Science, Oxford, pp 312–351

    Google Scholar 

  • Belay A (2002) The potential application of Spirulina (Arthrospira) as a nutritional and therapeutic supplement in health management. J Am Nutraceut Assoc 5:27–48

    Google Scholar 

  • Belay A, Kato T, Ota Y (1996) Spirulina (Arthrospira): potential application as an animal feed supplement. J Appl Phycol 8:303–311

    Article  Google Scholar 

  • Bharucha C, Meyer H, Mody A, Carman RH (1976) Hematology. Handbook of medical laboratory technique. Wesley Press, Mysore, pp 53–59

    Google Scholar 

  • Bidlingmeyer BA, Cohen SA, Tarvin TL (1984) Rapid analysis of amino acids using pre-column derivatization. J Chromatogr 336:93–104

    Article  CAS  PubMed  Google Scholar 

  • Borowitzka MA (1988) Vitamins and fine chemicals from micro-algae. In: Borowitzka MA, Borowitzka LJ (eds) Micro-algal biotechnology. Cambridge University Press, Cambridge, pp 153–196

    Google Scholar 

  • Borowitzka MA (2013) High-value products from microalgae—their development and commercialisation. J Appl Phycol 25:743–756

    Article  CAS  Google Scholar 

  • Christie WW (1982) Lipid analysis, 2nd edn. Pergamon Press, New York, p 338

    Google Scholar 

  • Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356

    Article  CAS  Google Scholar 

  • Dvir I, Chayoth R, Sod-Moriah U, Shany S, Nyska A, Stark AH, Madar Z, Arad SM (2000) Soluble polysaccharide and biomass of red microalga Porphyridium sp. alter intestinal morphology and reduce serum cholesterol in rats. Br J Nutr 84:469–476

    CAS  PubMed  Google Scholar 

  • Fevrier C, Seve B (1975) Incorporation of a Spirulina (Spirulina maxima) in swine food. Ann Nutr Aliment 29:625–650

    CAS  PubMed  Google Scholar 

  • Gellenbeck K (2012) Utilization of algal materials for nutraceutical and cosmeceutical applications—what do manufacturers need to know? J Appl Phycol 24:309–313

    Article  Google Scholar 

  • Geresh S, Mamontov A, Weinstein J (2002) Sulfation of extracellular polysaccharides of red microalgae: preparation, characterization and properties. J Biochem Biophys Methods 50:179–187

    Article  CAS  PubMed  Google Scholar 

  • Ginzberg A, Cohen M, Sod-Moriah UA, Shany S, Rosenshtrauch A, Arad (Malis) S (2000) Chickens fed with biomass of the red microalga Porphyridium sp. have reduced blood cholesterol level and modified fatty acid composition in egg yolk. J Appl Phycol 12:325–330

    Article  Google Scholar 

  • Gouveia L, Batista AP, Sousa I, Raymundo A, Bandarra NM (2008) Microalgae in novel food products. In: Papadoupoulos K (ed) Food Chemistry Research Developments. Nova, New York, pp 75–112

    Google Scholar 

  • Grobbelaar JU (2003) Quality control and assurance: crucial for the sustainability of the applied phycology industry. J Appl Phycol 15:209–215

    Article  CAS  Google Scholar 

  • Guedes AC, Amaro HM, Barbosa CR, Pereira RD, Malcata FX (2011) Fatty acid composition of several wild microalgae and cyanobacteria, with a focus on eicosapentaenoic, docosahexaenoic and α-linolenic acids for eventual dietary uses. Food Res Int 44:2721–2729

    Article  CAS  Google Scholar 

  • Guil-Guerrero JL, Navaro-Juarez R, Lopez-Martinez JC, Campara-Madrid P, Rebolloso-Fuentes MM (2004) Functional properties of the biomass of three microalgal species. J Food Eng 65:511–517

    Article  Google Scholar 

  • Hills C, Nakamura H (1978) Food from sunlight; planetary survival for hungry people. University of the Trees Press, Boulder Creek

    Google Scholar 

  • Hintz HF, Heitman H (1967) Sewage-grown algae as a protein supplement for swine. J Anim Prod 9:135–140

    Article  Google Scholar 

  • Imafidon GI, Sosulski FW (1990) Nucleic acid nitrogen of animal and plant foods. J Agric Food Chem 38:118–120

    Article  CAS  Google Scholar 

  • Isaacs R, Roneker KR, Huntley M, Lei XG (2011) A partial replacement of soybean meal by whole or defatted algal meal in diet for weanling pigs does not affect their plasma biochemical indicators. J Anim Sci 89:723–729

    Google Scholar 

  • Iwata K, Inayama T, Kato T (1990) Effects of Spirulina platensis on plasma lipoprotein lipase activity in fructose-induced hyperlipidemia in rats. J Nutr Sci Vitaminol 36:165–171

    Article  CAS  PubMed  Google Scholar 

  • Kavitha MD, Anila N, Ravishankar GA, Sarada R (2011) Effect of metabolic inhibitors on growth and carotenoids production in Dunaliella bardawil. J Food Sci Technol 50:1130–1136

    Google Scholar 

  • Kennedy MJ, Reader SL, Davies RJ (1993) Fatty acid production characteristics of fungi with particular emphasis on gamma linolenic acid production. Biotechnol Bioeng 42:625–634

    Article  CAS  PubMed  Google Scholar 

  • Lacaz-Ruiz R, Mos EN (1990) Produçao de biomass adem Spirulina maxima paraalimentaçao humana e animal. Rev Microbiol 21:85–97

    Google Scholar 

  • Leng X, Hsu KN, Austic RE, Lei XG (2014) Effect of dietary defatted diatom biomass on egg production and quality of laying hens. J Anim Sci Biotechnol 5:3–10

    Article  PubMed  PubMed Central  Google Scholar 

  • Lichtenstein AH, Appel LJ, Brands M, Carnethon M, Daniels S, Franch HA (2006) Diet and lifestyle recommendations revision 2006—a scientific statement from the American Heart Association Nutrition Committee. Circulation 114:82–96

    Article  PubMed  Google Scholar 

  • Lichtenthaler HK (1987) Chlorophylls and carotenoids: the pigments of photosynthetic biomembranes. In: Douce R, Packer L (eds) Methods in enzymology 148. Academic Press, New York, pp 350–382

    Google Scholar 

  • Lum KK, Kim J, Lei XG (2013) Dual potential of microalgae as a sustainable biofuel feedstock and animal feed. J Anim Sci Biotechnol 4:53

  • Merritt RJ, Auestad N, Kruger C, Buchanan S (2003) Safety evaluation of sources of docosahexaenoic acid and arachidonic acid for use in infant formulas in newborn piglets. Food Chem Toxicol 41:897–904

    Article  CAS  PubMed  Google Scholar 

  • Moreira LM, Behling BS, Rodrigues RS, Costa JAV, Soares AS (2013) Spirulina as a protein source in the nutritional recovery of Wistar rats. Braz Arch Biol Technol 56:447–456

    Article  CAS  Google Scholar 

  • Neori A (2011) “Green water” microalgae: the leading sector in world aquaculture. J Appl Phycol 23:143–149

    Article  Google Scholar 

  • Plaza M, Cifuentes A, Ibanez E (2008) In the search of new functional food ingredients from algae. Trends Food Sci Technol 19:31–39

    Article  CAS  Google Scholar 

  • Priyadarshani I, Rath B (2012) Commercial and industrial applications of micro algae. J Algal Biomass Utln 3:89–100

    Google Scholar 

  • Pulz O, Gross W (2004) Valuable products from biotechnology of microalgae. Appl Microbiol Biotechnol 65:635–648

    Article  CAS  PubMed  Google Scholar 

  • Quinn JR, Paton D (1979) A practical measurement of water hydration capacity of protein materials. Cereal Chem 56:38–40

    CAS  Google Scholar 

  • Reeves PG, Nielsen FH, Fahey GCJ (1993) AIN-93 purified diets for laboratory rodents: final report of the American Institute of Nutrition ad hoc writing committee on the reformulation of the AIN-76A rodent diet. J Nutr 123:1939–1951

    CAS  PubMed  Google Scholar 

  • Rodríguez-Cruz M, Tovar AR, del Prado M, Torres N (2005) Molecular mechanisms of action and health benefits of polyunsaturated fatty acids. Rev Invest Clin 57:457–472

    PubMed  Google Scholar 

  • Roman RB, Alvarez-Pez JM, Fernandez FGA, Molina Grima E (2002) Recovery of pure B-phycoerythrin from the microalga Porphyridium cruentum. J Biotechnol 93:73–85

    Article  Google Scholar 

  • Ross E, Dominy W (1990) The nutritional value of dehydrated, blue-green algae (Spirulina plantensis) for poultry. Poult Sci 69:794–800

    Article  CAS  PubMed  Google Scholar 

  • Sadasivam S, Manickam A (2008) Biochemical methods, 8th edn. New Age International Ltd. Publishers, New Delhi

    Google Scholar 

  • Samarakoon K, Jeon Y-J (2012) Bio-functionalities of proteins derived from marine algae. Food Res Int 48:948–960

    Article  CAS  Google Scholar 

  • Schilter B, Andersson C, Anton R, Constable A, Kleiner J, O’Brien J, Renwick AG, Korver O, Smit F, Walker R (2003) Guidance for the safety assessment of botanicals and botanical preparations for use in food and food supplements. Food Chem Toxicol 41:1625–1649

    Article  CAS  PubMed  Google Scholar 

  • Sekar S, Chandramohan M (2008) Phycobiliproteins as a commodity: trends in applied research, patents and commercialization. J Appl Phycol 20:113–136

    Article  Google Scholar 

  • Sellers RS, Morton D, Michael B, Roome N, Johnson JK, Yano BL, Perry R, Schafer K (2007) Society of toxicologic pathology position paper: organ weight recommendations for toxicology studies. Toxicol Pathol 35:751–755

    Article  PubMed  Google Scholar 

  • Servel MO, Claire C, Derrien A, Coiard L, De Roeck-Holtzhauer Y (1994) Fatty acid composition of some marine microalgae. Phytochemistry 36:691–693

    Article  Google Scholar 

  • Shaish A, Ben-Amotz A, Avron M (1992) Biosynthesis of β-carotene in Dunaliella. Methods Enzymol 213:439–444

    Article  CAS  Google Scholar 

  • Shields RJ, Lupatsch I (2012) Algae for aquaculture and animal feeds. J Anim Sci 21:23–37

    Google Scholar 

  • Simopoulos AP (2008) The importance of the omega-6/omega-3 fatty acid ratio in cardiovascular disease and other chronic diseases. Exp Biol Med 233:674–688

    Article  CAS  Google Scholar 

  • Sosulski FW, Humbert ES, Bui K, Jones JD (1976) Functional properties of rapeseed flours, concentrates and isolates. J Food Sci 41:1349–1352

    Article  CAS  Google Scholar 

  • SPSS Inc. (1998) SPSS base 8.0 for Windows user’s guide. SPSS, Chicago IL

    Google Scholar 

  • Tao Y, Barnett SM (2004) Effect of light quality on production of extracellular polysaccharides and growth rate of Porphyridium cruentum. Biochem Eng J 19:251–258

    Article  Google Scholar 

  • Vidyashankar S, VenuGopal KS, Chauhan VS, Muthukumar SP, Sarada R (2014) Characterization of defatted Scenedesmus dimorphus algal biomass as animal feed. J Appl Phycol. doi:10.1007/s10811-014-0498-9

    Google Scholar 

  • Yap TN, Wu JF, Pond WG, Krook L (1982) Feasibility of feeding Spirulina maxima, or Chlorella sp. to pigs weaned to a dry diet at 4 to 8 days of age. Nutr Rep Int 25:543–552

    Google Scholar 

Download references

Acknowledgments

KMD acknowledges ICMR, Govt. of India, New Delhi, for Senior Research Fellowship. The authors also thank the Director, CSIR-CFTRI, for providing research grant (MLP 0122) to carry out this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Sarada.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kavitha, M.D., Seema Shree, M.H., Vidyashankar, S. et al. Acute and subchronic safety assessment of Porphyridium purpureum biomass in the rat model. J Appl Phycol 28, 1071–1083 (2016). https://doi.org/10.1007/s10811-015-0655-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-015-0655-9

Keywords

Navigation