Skip to main content
Log in

Porous membrane as a means of gas and nutrient exchange in a tubular photobioreactor

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

In a tubular photobioreactor, a degassing column is often used for oxygen removal and carbon dioxide addition. The column may limit growth because the conditions are optimal only right after the degassing zone. In the present study, we tested continuous oxygen removal and nutrient delivery by placing a porous membrane tube inside a photobioreactor tube. The membrane tube would simultaneously remove dissolved oxygen and release nutrients and carbon dioxide to the photobioreactor tube. We tested oxygen as a model of gas exchange; nitrate and ammonium were tested as models of macronutrients and copper as a model of micronutrients. Oxygen-poor or nutrient-rich water was flowed in a dialysis tube placed inside a glass tube containing originally air-saturated water. In 60 min, the concentration of oxygen decreased by 48 % of the initial value and the nutrients reached 55–90 % of the feed flow concentration. The results suggest that integrating a porous membrane tube into the tubular photobioreactor tube can improve oxygen removal and nutrient delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Brennan L, Owende P (2010) Biofuels from microalgae—a review of technologies for production, processing, and extractions of biofuels and co-products. Renew Sust Energ Rev 14:557–577

    Article  CAS  Google Scholar 

  • Cai T, Park SY, Li Y (2013) Nutrient recovery from wastewater streams by microalgae: status and prospects. Renew Sust Energ Rev 19:360–369

    Article  CAS  Google Scholar 

  • Camacho Rubio F, Acién Fernández FG, Sánchez Pérez JA, García Camacho F, Molina Grima E (1999) Prediction of dissolved oxygen and carbon dioxide concentration profiles in tubular photobioreactors for microalgal culture. Biotechnol Bioeng 62:71–86

    Article  Google Scholar 

  • Carvalho AP, Pontes I, Gaspar H, Malcata FX (2006) Metabolic relationships between macro- and micronutrients, and the eicosapentaenoic acid and docosahexaenoic acid contents of Pavlova lutheri. Enzyme Microb Technol 38:358–366

    Article  CAS  Google Scholar 

  • Chai X, Zhao X (2012) Enhanced removal of carbon dioxide and alleviation of dissolved oxygen accumulation in photobioreactor with bubble tank. Bioresour Technol 116:360–365

    Article  CAS  PubMed  Google Scholar 

  • Cheng S (2003) Heavy metals in plants and phytoremediation. Environ Sci Pollut Res 10:335–340

    Article  CAS  Google Scholar 

  • Chisti Y (2007) Biodiesel from microalgae: research review paper. Biotechnol Adv 25:294–306

    Article  CAS  PubMed  Google Scholar 

  • Dor I (1977) Process for promotion of algae growth in a sewage medium. US Patent 40443903A

  • Ferreira BS, Fernandes HL, Reis A, Mateus M (1998) Microporous hollow fibres for carbon dioxide absorption: mass transfer model fitting and the supplying of carbon dioxide to microalgal cultures. J Chem Technol Biotechnol 71:61–70

    Article  CAS  Google Scholar 

  • Kim N-J, Lee C-G (2001) A theoretical consideration on oxygen production rate in microalgal cultures. Biotechnol Bioproc Eng 6:352–358

    Article  CAS  Google Scholar 

  • Lee Y-K, Hing H-K (1989) Supplying CO2 to photosynthetic algal cultures by diffusion through gas-permeable membranes. Appl Microbiol Biotechnol 31:298–301

    Article  CAS  Google Scholar 

  • Li Y, Horsman M, Wang B, Wu N (2008) Effects of nitrogen sources on cell growth and lipid accumulation of green alga Neochloris oleoabundans. Appl Microbiol Biotechnol 81:629–636

    Article  CAS  PubMed  Google Scholar 

  • Lide DR (ed) (2000) CRC Handbook of Chemistry and Physics, 81st edition 2000–2001. CRC, Boca Raton

  • Molina Grima E, Acién Fernández FG, García Camacho F, Chisti Y (1999) Photobioreactors: light regime, mass transfer, and scaleup. J Biotechnol 70:231–247

    Article  CAS  Google Scholar 

  • Molina Grima E, Acién Fernández FG, García Camacho F, Camacho Rubio F, Chisti Y (2000) Scale-up of tubular photobioreactors. J Appl Phycol 12:355–368

    Article  Google Scholar 

  • Molina E, Fernández J, Acién FG, Chisti Y (2001) Tubular photobioreactor design for algal cultures. J Biotechnol 92:113–131

    Article  CAS  PubMed  Google Scholar 

  • Pulz O (2001) Photobioreactors: production systems for phototrophic microorganisms: mini-review. Appl Microbiol Biotechnol 57:287–293

    Article  CAS  PubMed  Google Scholar 

  • Pulz O, Gross W (2004) Valuable products from biotechnology of microalgae: mini-review. Appl Microbiol Biotechnol 65:635–648

    Article  CAS  PubMed  Google Scholar 

  • Putt R, Singh M, Chinnasamy S, Das KC (2011) An efficient system for carbonation of high-rate algae pond water to enhance CO2 mass transfer. Bioresour Technol 102:3240–3245

    Article  CAS  PubMed  Google Scholar 

  • Raso S, van Genugten B, Vermuë M, Wijffels R (2012) Effect of oxygen concentration on the growth of Nannochloropsis sp. at low light intensity. J Appl Phycol 24:863–871

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Redfield AC (1934) On the proportions of organic derivations in sea water and their relation to the composition of plankton. In: Daniel RJ (ed) James Johnstone memorial volume. University Press of Liverpool, Liverpool, pp 177–192

    Google Scholar 

  • Sánchez Mirón A, Contreras Gómez A, García Camacho F, Molina Grima E, Chisti Y (1999) Comparative evaluation of compact photobioreactors for large-scale monoculture of microalgae. J Biotechnol 70:249–270

    Article  Google Scholar 

  • Seader JD, Henley EJ (2006) Separation process principles, 2nd edn. Wiley, New York, p 68

    Google Scholar 

  • Su Z, Kang R, Shi S, Cong W, Cai Z (2010) An effective device for gas–liquid oxygen removal in enclosed microalgae culture. Appl Biochem Biotechnol 160:428–437

    Article  CAS  PubMed  Google Scholar 

  • Tyystjärvi E (2004) Phototoxicity. In: Noodén LD (ed) Plant cell death processes. Academic, Amsterdam, pp 271–283

    Chapter  Google Scholar 

  • Ugwu CU, Aoyagi H, Uchiyama H (2008) Photobioreactors for mass cultivation of algae: review. Bioresour Technol 99:4021–4028

    Article  CAS  PubMed  Google Scholar 

  • Van Den Hende S, Vervaeren H, Boon N (2012) Flue gas compounds and microalgae: (bio-) chemical interactions leading to biotechnological opportunities. Biotechnol Adv 30:1405–1424

    Article  Google Scholar 

  • Wang B, Lan CQ, Horsman M (2012) Closed photobioreactors for production of microalgal biomasses. Biotechnol Adv 30:904–912

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was funded by the European Regional Development Fund (Bio Refine Tech project coordinated by Cursor Oy). ET was also supported by Academy of Finland. The authors are responsible for study design and collection and interpretation of the data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esa Tyystjärvi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ojanen, S., Tyystjärvi, E., Holmberg, H. et al. Porous membrane as a means of gas and nutrient exchange in a tubular photobioreactor. J Appl Phycol 27, 1169–1175 (2015). https://doi.org/10.1007/s10811-014-0397-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-014-0397-0

Keywords

Navigation