Skip to main content
Log in

Growth, pigments, UV-absorbing compounds and agar yield of the economic red seaweed Gracilaria lemaneiformis (Rhodophyta) grown at different depths in the coastal waters of the South China Sea

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

The economic red alga, Gracilaria lemaneiformis Bory, was grown at different depths in the coastal waters of the South China Sea, and its growth, pigments, ultra-violet (UV)-absorbing compounds and agar yield were investigated in order to see the impacts of depth change. Gracilaria lemaneiformis grew slower at greater depths in March, while the highest relative growth rate (RGR) was found at about 1.0 m depth in April, about 9% higher than that at surface water (0.5 m below the surface). The RGR increased with the increasing daily photosynthetically active radiation (PAR) dose received by the thalli at different depths. The contents of phycoerythrin and chlorophyll a increased, while that of UV-absorbing compounds (UVAC, absorption peak at 325 nm) decreased with increased depth. The highest levels of the UVAC in the thalli grown in surface seawater played a protective role against solar UV radiation (280–400 nm). The content of UVAC declined at deeper depths and under indoor low PAR. The agar yield of the thalli increased with the increasing depths, with the highest content found at 3.5 m depth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Armisen R (1995) World-wide use and importance of Gracilaria. J Appl Phycol 7:231–243

    Article  Google Scholar 

  • Beer S, Eshel A (1985) Determining phycoerythrin and phycocyanin concentrations in aqueous crude extracts of red algae. Aust J Mar Freshw Res 36:785–792

    Article  CAS  Google Scholar 

  • Bischof K, Kräbs G, Wiencke C, Hanelt D (2002) Solar ultraviolet radiation affects the activity of ribulose−1,5-bisphosphate carboxylase-oxygenase and the composition of photosynthetic and xanthophylls cycle pigments in the intertidal green alga Ulva lactuca L. Planta 215:502–509

    Article  PubMed  CAS  Google Scholar 

  • Buma AGJ, De Boer MK, Boelen P (2001) Depth distributions of DNA damage in Antarctic marine phyto- and bacterioplankton exposed to summertime UV radiation. J Phycol 37:200–208

    Article  CAS  Google Scholar 

  • Dunlap WC, Rae GA, Helbling EW, Villafañe VE, Holm-Hansen O (1995) Ultraviolet-absorbing compounds in natural assemblages of Antarctic phytoplankton. Antarct J 30:323–326

    Google Scholar 

  • Eswaran K, Mairh OP, Subbarao PV (2002) Inhibition of pigments and phycocolloid in a marine red alga Gracilaria edulis by Ultraviolet-B radiation. Biol Plantarum 45:157–159

    Article  CAS  Google Scholar 

  • Gao K, McKinley KR (1994) Use of macroalgae for marine biomass production and CO2 remediation: a review. J Appl Phycol 6:45–60

    Article  Google Scholar 

  • Franklin LA, Forster RM (1997) The changing irradiance environment: consequences for marine macrophyte physiology, productivity and ecology. Eur J Phycol 32:207–232

    Google Scholar 

  • Flores-Moya A, Hanelt D, Figueroa F, Altamirano M, Vinegla B, Salles S (1999) Involvement of solar UV-B radiation in recovery of inhibited photosynthesis in the brown alga Dictyota dichotoma (Hudson) Lamouroux. J Photochem Photobiol B Biol 49:129–135

    Article  CAS  Google Scholar 

  • Häder DP, Lebert M, Marangoni R, Colombetti G (1999) ELDONET-European light dosimeter network hardware and software. J Photochem Photobiol B Biol 52:51–58

    Article  Google Scholar 

  • Häder DP, Porst M, Lebert M (2001) Photoinhibition in common Atlantic macroalgae measured on site in Gran Canaria. Helgol Mar Res 55:67–76

    Article  Google Scholar 

  • Han T, Han YS, Kain JM, Häder DP (2003) Thallus differentiation of photosynthesis, growth, reproduction, and UV-B sensitivity in the green alga Ulva pertusa (Chlorophyceae). J Phycol 39:712–721

    Article  Google Scholar 

  • Hanelt D, Wiencke C, Nultsch W (1997) Influence of UV radiation on the photosynthesis of arctic macroalgae in the field. J Photochem Photobiol B Biol 38:40–47

    Article  CAS  Google Scholar 

  • Henry BE, Van Alstyne KL (2004) Effects of UV radiation on growth and phlorotannins in Fucus gardneri (Phaeophyceae) juveniles and embryos. J Phycol 40:527–533

    Article  CAS  Google Scholar 

  • Karsten U, Sawall T, Wiencke C (1998) A survey of the distribution of UV-absorbing substances in tropical macroalgae. Phycol Res 46:271–279

    CAS  Google Scholar 

  • Maegawa M, Kunieda M, Kida W (1993) Difference of the amount of UV-absorbing substance between shallow and deep water red algae. Jpn J Phycol 41:351–354

    Google Scholar 

  • Malta M, Rijstenbil JW, Brouwer PEM, Kromkamp JC (2003) Vertical heterogeneity in physiological characteristics of Ulva spp. mats. Mar Biol 143:1029–1038

    Article  Google Scholar 

  • Marinho-Soriano E, Bourret E, De Casabianca ML, Maury L (1999) Agar form the reproductive and vegetative stages of Gracilaria bursa-pastoris. Bioresour Technol 67:1–5

    Article  Google Scholar 

  • Molloy FJ, Bolton JJ (1996) The effect of season and depth on the growth of Gracilaria gracilis at Luderitz, Namibia. Bot Mar 39:407–413

    Article  Google Scholar 

  • Pakker H, Beekman CAC, Breeman AM (2000a) Efficient photoreactivation of UVB-induced DNA damage in the sublittoral macroalga Rhodymenia pseudpalmata (Rhodophyta) in relation to ultraviolet-B-exposure. Eur J Phycol 35:109–114

    Article  Google Scholar 

  • Pakker H, Martins R, Boelen P, Buma AGJ, Nikaido O, Breeman AM (2000b) Effects of temperature in the photoreactivation of ultraviolet-B induced DNA damage in Palmaria palmate (Rhodophyta). J Phycol 36:334–341

    Article  CAS  Google Scholar 

  • Ramus J, Beale SI, Mauzerall D, Haward KL (1976) Changes in photosynthetic pigment concentration in seaweeds as a function of water depth. Mar Biol 37:223–229

    Article  CAS  Google Scholar 

  • Raven JA (1991) Responses of aquatic photosynthetic organisms to increased solar UV-B. J Photochem Photobiol B Biol 9:239–244

    Article  Google Scholar 

  • Viñegla B, Segovia M, Figueroa FL (2006) Effect of artificial UV radiation on carbon and nitrogen metabolism in the macroalgae Fucus spiralis L. and Ulva olivascens Dangeard. Hydrobiologia 560:31–42

    Article  CAS  Google Scholar 

  • Wellburn AR (1994) The spectral determination of chlorophylls a and b, as well as total cartenoids, using various solvents with spectrophotometers of different resolution. J Plant Physiol 144:307–313

    CAS  Google Scholar 

  • Zacher K, Roleda MY, Hanelt D, Wiencke C (2007) UV effects on photosynthesis and DNA in propagules of three Antarctic seaweeds (Adenocystis utricularis, Monostroma hariotii and Porphyra endiviifolium). Planta (In press)

Download references

Acknowledgement

This study was funded by “863” project (2006AA10A413) from Ministry of Science and Technology and National Natural Science Foundation of China (Key Project No. 90411018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kunshan Gao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, J., Gao, K. Growth, pigments, UV-absorbing compounds and agar yield of the economic red seaweed Gracilaria lemaneiformis (Rhodophyta) grown at different depths in the coastal waters of the South China Sea. J Appl Phycol 20, 681–686 (2008). https://doi.org/10.1007/s10811-007-9247-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-007-9247-7

Keywords

Navigation