Skip to main content

Advertisement

Log in

How Useful are the Concepts of Familiarity, Biological Integrity, and Ecosystem Health for Evaluating Damages by GM Crops?

  • Articles
  • Published:
Journal of Agricultural and Environmental Ethics Aims and scope Submit manuscript

Abstract

In the discussion about consequences of the release of genetically modified (GM) crops, the meaning of the term “environmental damage” is difficult to pin down. We discuss some established concepts and criteria for understanding and evaluating such damages. Focusing on the concepts of familiarity, biological integrity, and ecosystem health, we argue that, for the most part, these concepts are highly ambiguous. While environmental damage is mostly understood as significant adverse effects on conservation resources, these concepts may not relate directly to effects on tangible natural resources but rather to parameters of land use or ecological processes (e.g., the concept of biological integrity). We stress the importance of disclosing the normative assumptions underlying damage concepts and procedures for the evaluation of damages by GM crops. A conceptualization of environmental damage should precede its operationalization. We recommend an unambiguous definition for damage developed earlier and recommend that evaluation criteria be based on this. However, a general damage definition cannot replace case-specific operationalization of damage, which remains an important future challenge.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Altieri, M. A. (2000). The ecological impacts of transgenic crops on agroecosystem health. Ecosystem Health, 6, 13–23.

    Google Scholar 

  • American Heritage Dictionary. (2000). The American heritage dictionary of the english language. Boston, Massachusetts: Houghton Mifflin Company.

    Google Scholar 

  • Andow, D. A., & Zwahlen, C. (2006). Assessing environmental risks of transgenic plants. Ecology Letters, 9, 196–214.

    Article  Google Scholar 

  • Angermeier, P. L., & Karr, J. R. (1994). Biological integrity versus biological diversity as policy directives. BioScience, 44, 690–697.

    Article  Google Scholar 

  • Arriaga, L., Huerta, E., Lira-Saade, R., Moreno, E., & Alarcón, J. (2006). Assessing the risk of releasing transgenic Curcubita spp. in Mexico. Agriculture, Ecosystems & Environment, 112, 291–299.

    Article  Google Scholar 

  • Barber, S. (1999). Transgenic plants and safety regulation. In K. Ammann, Y. Jacot, V. Simonsen, & G. Kjellsson (Eds.), Methods for risk assessment of transgenic plants. Volume III: Ecological risks and prospects of transgenic plants, where do we go from here? A dialogue between biotech industry and science (pp. 155–158). Basel, Switzerland: Birkhäuser.

    Google Scholar 

  • Bartz, R., Heink, U., & Kowarik, I. (2010). Proposed definition of environmental damage illustrated by the cases of genetically modified crops and invasive species. Conservation Biology, 24, 675–681.

    Article  Google Scholar 

  • Baumgarte, S., & Tebbe, C. C. (2005). Field studies on the environmental fate of the Cry1Ab Bt-toxin produced by transgenic maize (MON810) and its effect on bacterial communities in the maize rhizosphere. Molecular Ecology, 14, 2539–2551.

    Article  Google Scholar 

  • Boyd, J., & Banzhaf, S. (2007). What are ecosystem services? The need for standardized environmental accounting units. Ecological Economics, 63, 616–626.

    Article  Google Scholar 

  • Brand, F., & Jax, K. (2007). Focussing the meaning(s) of resilience: resilience as a descriptive concept and a boundary object. Ecology and Society 12. http://www.ecologyandsociety.org/vol12/iss1/art23/. Accessed 5 May 2009.

  • Breckling, B., & Züghart, W. (2001). Die Etablierung einer ökologischen Langzeitbeobachtung beim großflächigen Anbau transgener Nutzpflanzen. In M. Lemke & G. Winter (Eds.), Bewertung von Umweltauswirkungen von gentechnisch veränderten Organismen im Zusammenhang mit naturschutzbezogenen Fragestellungen (pp. 319–343). Berlin: UBA-Berichte 3/01.

    Google Scholar 

  • Callicott, J. B., Crowder, L. B., & Mumford, K. (1999). Current normative concepts in conservation. Conservation Biology, 13, 22–35.

    Article  Google Scholar 

  • Clements, F. E. (1916). Plant succession: An analysis of the development of vegetation. Washington, DC: Carnegie Institute of Washington, Publication No. 242.

    Google Scholar 

  • Comstock, G. (1998). Is it unnatural to genetically modify plants? Weed Science, 46, 647–651.

    Google Scholar 

  • Costanza, R., d’Arge, R., de Groot, R., Farber, S., Grasso, M., Hannon, B., et al. (1997). The value of the world’s ecosystem services and natural capital. Nature, 387, 253–260.

    Article  Google Scholar 

  • Dobson, A. (1997). Genetic engineering and environmental ethics. Cambridge Quarterly of Healthcare Ethics, 6, 205–221.

    Article  Google Scholar 

  • Doyle, D., & Kelso, T. (2004). Genetically engineered salmon, ecological risk, and environmental policy. Bulletin of Marine Science, 74, 509–528.

    Google Scholar 

  • Ehrlich, P. R., & Ehrlich, A. H. (1981). Extinction: The causes and consequences of the disappearance of species. New York: Random House.

    Google Scholar 

  • Evernden, N. (1992). The social creation of nature. Baltimore: Johns Hopkins.

    Google Scholar 

  • Giampietro, M. (2002). The precautionary principle and ecological hazards of genetically modified organisms. Ambio, 31, 466–470.

    Google Scholar 

  • Hails, R. S. (2002). Assessing the risks associated with new agricultural practices. Nature, 418, 685–688.

    Article  Google Scholar 

  • Hargrove, E. (2003). Weak anthropocentric intrinsic value. In A. Light & H. Rolston (Eds.), An overview of environmental ethics (pp. 175–188). Oxford: Blackwell.

    Google Scholar 

  • Haskell, B. D., Norton, B. G., & Costanza, R. (1992). What is ecosystem health and why should we worry about it? In R. Costanza, B. G. Norton, & B. D. Haskell (Eds.), Ecosystem health: New goals for environmental management (pp. 1–18). Washington DC: Island Press.

    Google Scholar 

  • Heink, U., & Kowarik, I. (2010). What are indicators? On the definition of indicators in ecology and environmental planning. Ecological Indicators, 10, 584–593.

    Article  Google Scholar 

  • Hempel, C. G. (1952). Fundamentals of concept formation in empirical science. Chicago: University of Chicago Press.

    Google Scholar 

  • Hill, M. O., Roy, D. B., & Thompson, K. (2002). Hemeroby, urbanity and ruderality: Bioindicators of disturbance and human impact. Journal of Applied Ecology, 39, 708–720.

    Article  Google Scholar 

  • Holland, A. (1995). The use and abuse of ecological concepts in environmental ethics. Biodiversity and Conservation, 4, 812–826.

    Article  Google Scholar 

  • Holtug, N. (2001). The harm principle and genetically modified food. Journal of Agricultural and Environmental Ethics, 14, 169–178.

    Article  Google Scholar 

  • Hull, R. B., Richert, D., Seekamp, E., Robertson, D., & Buhyoff, G. J. (2003). Understandings of environmental quality: Ambiguities and values held by environmental professionals. Environmental Management, 31, 1–13.

    Article  Google Scholar 

  • Hutton, S. A., & Giller, P. S. (2003). The effects of the intensification of agriculture on northern temperate dung beetle communities. Journal of Applied Ecology, 40, 994–1007.

    Article  Google Scholar 

  • Ives, A. R., & Carpenter, S. R. (2007). Stability and diversity of ecosystems. Science, 317, 58–62.

    Article  Google Scholar 

  • Jamieson, D. (1995). Ecosystem health: Some preventive medicine. Environmental Values, 4, 333–344.

    Article  Google Scholar 

  • Karr, J. R., & Dudley, D. R. (1981). Ecological perspective on water quality goals. Environmental Management, 5, 55–68.

    Article  Google Scholar 

  • Kowarik, I. (1990). Some responses of flora and vegetation to urbanization in Central Europe. In H. Sukopp, S. Hejny, & I. Kowarik (Eds.), Plants and plant communities in the Urban environment (pp. 45–74). The Hague: SPB Academic Publishing.

    Google Scholar 

  • Kowarik, I. (1999). Natürlichkeit, Naturnähe und Hemerobie als Bewertungskriterien. In W. Konold, R. Böcker, & U. Hampicke (Eds.), Handbuch für Naturschutz und Landschaftspflege V-2.1 (pp. 1–18). Landsberg, Germany: Ecomed.

    Google Scholar 

  • Lackey, R. T. (2001). Values, policy, and ecosystem health. BioScience, 51, 437–443.

    Article  Google Scholar 

  • Lammerts van Bueren, E., & Struik, P. C. (2005). Integrity and rights of plants: Ethical notions in organic plant breeding and propagation. Journal of Agricultural and Environmental Ethics, 18, 479–493.

    Article  Google Scholar 

  • Levidow, L., & Carr, S. (1999). Dilemmas of risk-assessment research for transgenic crops. In K. Ammann, Y. Jacot, V. Simonsen, & G. Kjellsson (Eds.), Methods for risk assessment of transgenic plants, Volume III: Ecological risks and prospects of transgenic plants, where do we go from here? A dialogue between biotech industry and science (pp. 213–222). Basel, Switzerland: Birkhäuser.

    Google Scholar 

  • Levidow, L., Carr, S., Schomberg, R. V., & Wield, D. (1996). Regulating agricultural biotechnology in Europe: Harmonization difficulties, opportunities, dilemmas. Science and Public Policy, 23, 135–157.

    Google Scholar 

  • Lilley, A. K., Bailey, M. J., Cartwright, C., Turner, S. L., & Hirsch, P. R. (2006). Life in earth: The impact of GM plants on soil ecology? Trends in Biotechnology, 24, 9–14.

    Article  Google Scholar 

  • Mace, G. M., & Baillie, J. E. M. (2007). The 2010 biodiversity indicators: Challenges for science and policy. Conservation Biology, 21, 1406–1413.

    Article  Google Scholar 

  • Mageau, M. T., Costanza, R., & Ulanowicz, R. E. (1995). The development and initial testing of a quantitative assessment of ecosystem health. Ecosystem Health, 1, 201–213.

    Google Scholar 

  • McCann, K. S. (2000). The diversity-stability debate. Nature, 405, 228–233.

    Article  Google Scholar 

  • Mikkelson, G. M. (2009). Diversity-stability hypothesis. In J. B. Callicott, R. Frodeman, V. Davion, B. G. Norton, C. Palmer, & P. B. Thompson (Eds.), Encyclopedia of environmental ethics and philosophy (Vol. 1, pp. 255–256). Farmington Hills, MI: MacMillan.

    Google Scholar 

  • Muir, W. M., & Howard, R. D. (2004). Characterization of environmental risk of genetically engineered (GE) organisms and their potential to control exotic invasive species. Aquatic Sciences, 66, 414–420.

    Article  Google Scholar 

  • Nap, J.-P., Metz, P. L. J., Escaler, M., & Conner, A. J. (2003). The release of genetically modified crops into the environment. Part I. Overview of current status and regulations. The Plant Journal, 33, 1–18.

    Article  Google Scholar 

  • Norton, B. G. (1993). Should environmentalists be organicists? Topoi, 12, 21–30.

    Article  Google Scholar 

  • Norton, B. (1995). Objectivity, intrinsicality, and sustainability. Comment on Nelson’s ‘Health and disease as “thick concepts” in ecosystemic contexts’. Environmental Values, 4, 323–332.

    Article  Google Scholar 

  • Noss, R. F. (1990). Indicators for monitoring biodiversity: A hierarchical approach. Conservation Biology, 4, 355–364.

    Article  Google Scholar 

  • OECD. (1993). Safety considerations for biotechnology. Scale-up of crop plants. Paris: OECD.

    Google Scholar 

  • Okey, B. W. (1996). Systems approaches and properties, and agroecosystem health. Journal of Environmental Management, 48, 187–199.

    Article  Google Scholar 

  • Ott, K. (2003). The spectrum of environmental values. In K. Ott & P. P. Thapa (Eds.), Greifswald’s environmental ethics (pp. 31–40). Greifswald: Steinbeckerverlag Rose.

    Google Scholar 

  • Pilson, D., & Prendeville, H. R. (2004). Ecological effects of transgenic crops and the escape of transgenes into wild populations. Annual Review of Ecology, Evolution, and Systematics, 35, 149–174.

    Article  Google Scholar 

  • Potthast, T. (2004). Conceptual, epistemological, and ethical perspectives on “ecological damage” with regard to genetically modified organisms. Naturschutz und Biologische Vielfalt, 1, 245–256.

    Google Scholar 

  • Rapport, D. J. (1989). What constitutes ecosystem health? Perspectives in Biology and Medicine, 33, 120–132.

    Google Scholar 

  • Rapport, D. J., Gaudet, C., Karr, J. R., Baron, J. S., Bohlen, C., Jackson, W., et al. (1998). Evaluating landscape health: integrating societal goals and biophysical process. Journal of Environmental Management, 53, 1–15.

    Article  Google Scholar 

  • Redford, K. H., & Richter, B. D. (1999). Conservation of biodiversity in a world of use. Conservation Biology, 13, 1246–1256.

    Article  Google Scholar 

  • Redford, K. H., & Sanderson, S. E. (1992). The brief, barren marriage of biodiversity and sustainability. Bulletin of the Ecological Society of America, 73, 36–39.

    Google Scholar 

  • Rolston, H., I. I. I. (1991). Environmental ethics: Values in and duties to the natural world. In F. H. Bormann & S. R. Kellert (Eds.), The broken circle: Ecology, economics, ethics (pp. 73–96). New Haven: Yale University Press.

    Google Scholar 

  • Sagoff, M. (2005). Do non-native species threaten the natural environment? Journal of Agricultural and Environmental Ethics, 18, 215–236.

    Article  Google Scholar 

  • Shrader-Frechette, K. (1997). Ecological risk assessment and ecosystem health: Fallacies and solutions. Ecosystem Health, 3, 73–81.

    Article  Google Scholar 

  • Shrader-Frechette, K., & McCoy, E. (1994). How the tail wags the dog: How value judgments determine ecological science. Environmental Values, 3, 107–120.

    Article  Google Scholar 

  • Siipi, H. (2004). Naturalness in biological conservation. Journal of Agricultural and Environmental Ethics, 17, 457–477.

    Article  Google Scholar 

  • Snow, A. A., Andow, D. A., Gepts, P., Hallerman, E. M., Power, A., Tiedje, J. M., et al. (2005). Genetically engineered organisms and the environment: Current status and recommendations. Ecological Applications, 15, 377–404.

    Article  Google Scholar 

  • SRU (Sachverständigenrat für Umweltfragen-German Advisory Council on the Environment). (2004). Umweltpolitische Handlungsfähigkeit sichern. Umweltgutachten 2004 des Rates von Sachverständigen für Umweltfragen. Berlin: Nomos Verlagsgesellschaft.

    Google Scholar 

  • Straughan, R. (1995a). Ethics, Morality and Crop Biotechnology. 1. Intrinsic Concerns. Outlook on Agriculture, 24, 187–192.

    Google Scholar 

  • Straughan, R. (1995b). Ethics, Morality and Crop Biotechnology. 2. Extrinsic concerns about consequences. Outlook on Agriculture, 24, 233–240.

    Google Scholar 

  • Suter, G. W. (1993). A critique of ecosystem health concepts and indexes. Environmental Toxicology and Chemistry, 12, 1533–1539.

    Article  Google Scholar 

  • Tilman, D., Fargione, J., Wolff, B., D’Antonio, C., Dobson, A., Howarth, R., et al. (2001). Forecasting agriculturally driven global environmental change. Science, 292, 281–284.

    Article  Google Scholar 

  • Wachbroit, R. (1994). Normality as a biological concept. Philosophy of Science, 61, 579–591.

    Article  Google Scholar 

  • Westra, L. (1998). Biotechnology and transgenics in agriculture and aquaculture: The perspective from ecosystem integrity. Environmental Values, 7, 79–96.

    Article  Google Scholar 

  • White, J. L. (1999). The concept of familiarity and its role in the commercialization of pest resistant genetically engineered plants. In K. Ammann, Y. Jacot, V. Simonsen, & G. Kjellsson (Eds.), Methods for risk assessment of transgenic plants. Volume III: Ecological risks and prospects of transgenic plants, where do we go from here? A dialogue between biotech industry and science (pp. 225–226). Basel, Switzerland: Birkhäuser.

    Google Scholar 

  • Xu, W., & Mage, J. A. (2001). A review of concepts and criteria for assessing agroecosystem health including a preliminary case study of southern Ontario. Agriculture, Ecosystems & Environment, 83, 215–233.

    Article  Google Scholar 

Download references

Acknowledgments

This paper results from a project funded by the German Federal Agency for Nature Conservation (BfN; FKZ 805 81 004). We thank F. Berhorn, T. Meise, U. Sukopp and the members of the accompanying working group for intensive discussion, three anonymous reviewers for helpful comments on a previous version, and K. Vargas for improving our English.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrich Heink.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heink, U., Bartz, R. & Kowarik, I. How Useful are the Concepts of Familiarity, Biological Integrity, and Ecosystem Health for Evaluating Damages by GM Crops?. J Agric Environ Ethics 25, 3–17 (2012). https://doi.org/10.1007/s10806-010-9289-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10806-010-9289-8

Keywords

Navigation