Skip to main content
Log in

Equivalences of power APN functions with power or quadratic APN functions

  • Published:
Journal of Algebraic Combinatorics Aims and scope Submit manuscript

Abstract

On \(F={\mathbb {F}}_{2^{n}}\) (\(n\ge 3\)), the power APN function \(f_{d}\) with exponent d is CCZ-equivalent to the power APN function \(f_{e}\) with exponent e if and only if there is an integer a with \(0\le a\le n-1\) such that either (A) \(e\equiv d 2^{a}\) mod \(2^{n}-1\) or (B) \(de\equiv 2^{a}\) mod \(2^{n}-1\), where case (B) occurs only when n is odd (Theorem 1). A quadratic APN function f is CCZ-equivalent to a power APN function if and only if f is EA-equivalent to one of the Gold functions (Theorem 2). Using Theorem 1, a complete answer is given for the question exactly when two known power APN functions are CCZ-equivalent (Proposition 2). The key result to establish Theorem 1 is the conjugacy of some cyclic subgroups in the automorphism group of a power APN function (Corollary 3). Theorem 2 characterizes the Gold functions as unique quadratic APN functions which are CCZ-equivalent to power functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bracken, C., Byrne, E., McGuire, G., Nebe, G.: On the equivalence of quadratic APN functions. Des. Codes Cryptogr. 61, 261–272 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  2. Budaghyan, L., Carlet, C., Leander, G.: On inequivalence between known power APN functions. In: Masnyk-Hansen, O., Michon, J.-F., Valarcher, P., J.-B.Yunes (Eds.) Proceedings of the conference BFCA’08, Copenhagen

  3. Carlet, C.: Vectorial boolean functions for cryptography. In: Crema, Y., Hammer, P. (eds.) Chapter 9 in Boolean Methods and Models in Mathematics, Computer Science, and Engineering. Cambridge University Press, Cambridge (2010)

  4. Dempwolff, U., Edel, Y.: Dimensional dual hyperovals and APN functions with translation groups. J. Algebraic Combin. 39, 457–496 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  5. Edel, Y., Pott, A.: A new almost perfect nonlinear function which is not quadratic. Adv. Math. Commun. 3, 59–81 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Gorenstein, D.: Finite Groups. Harper and Row, New York (1968)

    MATH  Google Scholar 

  7. Huppert, B.: Endliche Gruppen. Springer, Berlin (1967)

    Book  MATH  Google Scholar 

  8. Pasini, A., Yoshiara, S.: On a new family of flag-transitive semibiplanes. Eur. J. Combin. 22, 529–545 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  9. Suzuki, M.: Group Theory, Grundlehren der mathematischen Wissenschaften 247-248, Springer, New York, Berlin, Heidelberg (1982–1986)

  10. Yoshiara, S.: A family of \(d\)-dimensional dual hyperovals in \(PG(2d+1,2)\). Eur. J. Combin. 20, 589–603 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  11. Yoshiara, S.: Dimensional dual arcs—a survey. Walter de Gruyter. In: Hulpke, A., Liebler, B., Penttila, T., Seress, A. (eds.) Finite Geometries, Groups, and Computation, pp. 247–266. Berlin, New York (2006)

    Google Scholar 

  12. Yoshiara, S.: Dimensional dual hyperovals associated with quadratic APN functions. Innov. Incid. Geom. 8, 147–169 (2008)

    MathSciNet  MATH  Google Scholar 

  13. Yoshiara, S.: A characterization of a class of dimensional dual hyperovals with doubly transitive automorphism groups and its applications. Eur. J. Combin. 29, 1521–1534 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  14. Yoshiara, S.: Notes on APN functions, semibiplanes and dimensional dual hyperovals. Des. Codes Cryptogr. 56, 197–218 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. Yoshiara, S.: Equivalences of quadratic APN functions. J. Algebraic Combin. 35, 461–475 (2012)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

The author thanks one of the reviewers to the old version of this paper (where Theorem 2 and only a weaker version of Theorem 1 are shown) for making me aware of the importance to establish the conjugacy of some cyclic subgroups in the automorphism group of a power APN function.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satoshi Yoshiara.

Additional information

This paper is dedicated to Professor Hiramine, who passed away on January, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yoshiara, S. Equivalences of power APN functions with power or quadratic APN functions. J Algebr Comb 44, 561–585 (2016). https://doi.org/10.1007/s10801-016-0680-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10801-016-0680-z

Keywords

Mathematics Subject Classification

Navigation