Skip to main content
Log in

Nano-engineering PdNi networks by voltammetric dealloying for ethanol oxidation

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

PdNi particle networks (PdNi NN) are prepared by voltammetric dealloying using catkin-like PdNi nanoparticles as precursor. It is found that voltammetric dealloying plays an important role for the formation of these networks. Electron microscopy and X-ray diffraction are employed to show the evolution of the morphology of the as-prepared catalysts. The results generated from the cyclic voltammetry experiments showed that the PdNi NN was electrocatalytically active toward the ethanol oxidation reaction (EOR). Compared with PdNi/C and commercial Pd/C, the oxidation peak potential of PdNi NN shifted positively by + 105 and + 168 mV, and the peak current density increased by 1.53 and 3.75 times. The high electrocatalytic activity of PdNi NN toward the EOR afforded the feasibility to exploit highly active electro catalysts for direct ethanol fuel cells.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Nguyen ST, Law HM, Nguyen HT, Kristian N, Wang S, Chan SH, Wang X (2009) Appl Catal B 91:507–515

    Article  CAS  Google Scholar 

  2. Chen L, Guo H, Fujita T, Hirata A, Zhang W, Inoue A, Chen M (2011) Adv Funct Mater 21:4364–4370

    Article  CAS  Google Scholar 

  3. Demirci UB (2007) J Power Sources 169:239–246

    Article  CAS  Google Scholar 

  4. Yi Q, Niu F, Sun L (2011) Fuel 90:2617–2623

    Article  CAS  Google Scholar 

  5. Yin J, Shan S, Ng MS, Yang L, Mott D, Fang W, Kang N, Luo J, Zhong CJ (2013) Langmuir 29:9249–9258

    Article  CAS  PubMed  Google Scholar 

  6. Wang R, Ma Y, Wang H, Key J, Ji S (2014) Chem Commun 50:12877–12879

    Article  CAS  Google Scholar 

  7. Ma Y, Wang R, Wang H, Linkov V, Ji S (2014) Phys Chem Chem Phys 16:3593–3602

    Article  CAS  PubMed  Google Scholar 

  8. Yang H, Wang H, Li H, Ji S, Davids MW, Wang R (2014) J Power Sources 260:12–18

    Article  CAS  Google Scholar 

  9. Liu HL, Nosheen F, Wang X (2015) Chem Soc Rev 44:3056–3078

    Article  CAS  PubMed  Google Scholar 

  10. Zhu C, Guo S, Dong S (2013) Chemistry 19:1104–1111

    Article  CAS  PubMed  Google Scholar 

  11. Hong W, Wang J, Wang E (2014) Electrochem Commun 40:63–66

    Article  CAS  Google Scholar 

  12. Lu Y, Jiang Y, Chen W (2013) Nano Energy 2:836–844

    Article  CAS  Google Scholar 

  13. Wang J, Zhang XB, Wang ZL, Wang LM, Xing W, Liu X (2012) Nanoscale 4:1549–1552

    Article  CAS  PubMed  Google Scholar 

  14. Zhang L, Lu D, Chen Y, Tang Y, Lu T (2014) J Mater Chem A 2:1252–1256

    Article  CAS  Google Scholar 

  15. Herrmann A-K, Formanek P, Borchardt L, Klose M, Giebeler L, Eckert J, Kaskel S, Gaponik N, Eychmüller A (2013) Chem Mater 26:1074–1083

    Article  CAS  Google Scholar 

  16. Xu Y, Yuan Y, Ma A, Wu X, Liu Y, Zhang B (2012) Chemphyschem 13:2601–2609

    Article  CAS  PubMed  Google Scholar 

  17. Ma Y, Wang H, Lv W, Ji S, Pollet BG, Li S, Wang R (2015) RSC Adv 5:68655–68661

    Article  CAS  Google Scholar 

  18. Li H, Li Y-J, Sun L-L, Zhao X-L (2013) Electrochim Acta 108:74–78

    Article  CAS  Google Scholar 

  19. Liu W, Herrmann AK, Geiger D, Borchardt L, Simon F, Kaskel S, Gaponik N, Eychmuller A (2012) Angew Chem 51:5743–5747

    Article  CAS  Google Scholar 

  20. Wan Q, Liu Y, Wang Z, Wei W, Li B, Zou J, Yang N (2013) Electrochem Commun 29:29–32

    Article  CAS  Google Scholar 

  21. Xu J, Fu G, Tang Y, Zhou Y, Chen Y, Lu T (2012) J Mater Chem 22:13585

    Article  CAS  Google Scholar 

  22. Snyder J, McCue I, Livi K, Erlebacher J (2012) J Am Chem Soc 134:8633–8645

    Article  CAS  PubMed  Google Scholar 

  23. Oezaslan M, Heggen M, Strasser P (2012) J Am Chem Soc 134:514–524

    Article  CAS  PubMed  Google Scholar 

  24. Ding J, Ji S, Wang H, Key J, Brett DJL, Wang R (2018) J Power Sources 374:48–54

    Article  CAS  Google Scholar 

  25. Ding J, Ji S, Wang H, Pollet BG, Wang R (2017) Electrochim Acta 255:55–62

    Article  CAS  Google Scholar 

  26. Wang R, Wang H, Luo F, Liao S (2018) Electrochem Energy Rev 1:324–387

    Article  Google Scholar 

  27. Yang S, Zhang X, Mi H, Ye X (2008) J Power Sources 175:26–32

    Article  CAS  Google Scholar 

  28. Ghosh D, Giri S, Mandal A, Das CK (2013) Chem Phys Lett 573:41–47

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the National Natural Science Foundation of China (21766032 and 51661008) and Shenzhen Innovation Fund (JCYJ20160520161411353) for financially supporting this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shan Ji or Hui Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, J., Ji, S., Wang, H. et al. Nano-engineering PdNi networks by voltammetric dealloying for ethanol oxidation. J Appl Electrochem 49, 39–44 (2019). https://doi.org/10.1007/s10800-018-1255-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-018-1255-6

Keywords

Navigation