Skip to main content

Advertisement

Log in

Facile synthesis of nano dendrite-structured Ni–NiO foam/ERGO by constant current method for supercapacitor applications

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

This study introduces a novel, non-toxic, scalable, two-step method for the fabrication of highly nanoporous nickel and nickel oxide (Ni–NiO) foam/Electrochemically reduced graphene oxide (ERGO) electrodes with exceptional capacitance suitable for supercapacitor application. This procedure includes drop cast and graphene oxide (GO) reduction by galvanostatic process. To create the electrodes, electrodeposition process and selective electrochemical dealloying accompanied by a hydrogen evolution reaction (HER) were performed on a copper substrate. Afterwards, drop cast and galvanostatic processes were accomplished to coat GO nanosheets on Ni–NiO foam. The structure of achieved nanocomposites was investigated by scanning electron microscopy (SEM), X-ray diffraction (XRD), Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS). High-specific capacitance of 1995 F g−1 at a current density of 1 A g−1 (galvanostatic charge–discharge) (GCD) was achieved for the Ni–NiO foam/electrochemically reduced graphene oxide (ERGO) electrode with excellent cycling stability. A constant, high-specific capacitance (95.1% of the initial value) was achieved after 6000 cycles at 20 A g−1.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Zhao X, Sánchez BM, Dobson PJ, Grant PS (2011) The role of nanomaterials in redox-based supercapacitors for next generation energy storage devices. Nanoscale 3(3):839–855

    Article  CAS  PubMed  Google Scholar 

  2. Simon P, Gogotsi Y (2008) Materials for electrochemical capacitors. Nat Mater 7(11):845

    Article  CAS  PubMed  Google Scholar 

  3. Nikolić ND, Popov KI, Pavlović LJ, Pavlović MG (2006) The effect of hydrogen codeposition on the morphology of copper electrodeposits. I. The concept of effective overpotential. J Electro Chem 588(1):88–98

    Article  CAS  Google Scholar 

  4. Nikolić ND, Branković G, Pavlović MG, Popov KI (2008) The effect of hydrogen co-deposition on the morphology of copper electrodeposits. II. Correlation between the properties of electrolytic solutions and the quantity of evolved hydrogen. J Electro Chem 621(1):13–21

    Article  CAS  Google Scholar 

  5. Cherevko S, Kulyk N, Chung CH (2012) Nanoporous Pt@AuxCu100–x by hydrogen evolution assisted electrodeposition of AuxCu100–x and galvanic replacement of Cu with Pt: electrocatalytic properties. Langmuir 28(6):3306–3315

    Article  CAS  PubMed  Google Scholar 

  6. Cherevko S, Kulyk N, Chung CH (2012) Nanoporous palladium with sub-10 nm dendrites by electrodeposition for ethanol and ethylene glycol oxidation. Nanoscale 4(1):103–105

    Article  CAS  PubMed  Google Scholar 

  7. Cherevk S, Kulyk N, Chung CH (2012) Pulse-reverse electrodeposition for mesoporous metal films: combination of hydrogen evolution assisted deposition and electrochemical dealloying. Nanoscale 4(2):568–575

    Article  Google Scholar 

  8. Jiang J, Li Y, Liu J, Huang X, Yuan C, Lou XWD (2012) Recent advances in metal oxide-based electrode architecture design for electrochemical energy storage. Adv Mater 24(38):5166–5180

    Article  CAS  PubMed  Google Scholar 

  9. Srivastava M, Singh J, Kuila T, Layek RK, Kim NH, Lee JH (2015) Recent advances in graphene and its metal-oxide hybrid nanostructures for lithium-ion batteries. Nanoscale 7(11):4820–4868

    Article  CAS  PubMed  Google Scholar 

  10. Wang F, Kozawa D, Miyauchi Y, Hiraoka K, Mouri S, Ohno Y, Matsuda K (2015) Considerably improved photovoltaic performance of carbon nanotube-based solar cells using metal oxide layers. Nat commun 6:6305

    Article  CAS  PubMed  Google Scholar 

  11. Tao K, Li P, Kang L, Li X, Zhou Q, Dong L, Liang W (2015) Facile and low-cost combustion-synthesized amorphous mesoporous NiO/carbon as high mass-loading pseudocapacitor materials. J Power Sources 293:23–32

    Article  CAS  Google Scholar 

  12. Xu YT, Guo Y, Li C, Zhou XY, Tucker MC, Fu XZ, Wong CP (2015) Graphene oxide nano-sheets wrapped Cu2O microspheres as improved performance anode materials for lithium ion batteries. Nano Energy 11:38–47

    Article  CAS  Google Scholar 

  13. Bonaccorso F, Colombo L, Yu G, Stoller M, Tozzini V, Ferrari AC, Pellegrini V (2015) Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage. Science 347:1246501

    Article  CAS  PubMed  Google Scholar 

  14. Wei W, Yang S, Zhou H, Lieberwirth I, Feng X, Müllen K (2013) 3D graphene foams cross-linked with pre-encapsulated Fe3O4 nanospheres for enhanced lithium storage. Adv Mater 25(21):2909–2914

    Article  CAS  PubMed  Google Scholar 

  15. Cao X, Yin Z, Zhang H (2014) Three-dimensional graphene materials: preparation, structures and application in supercapacitors. Energ Environ Sci 7(6):1850–1865

    Article  CAS  Google Scholar 

  16. Feng L, Zhu Y, Ding H, Ni C (2014) Recent progress in nickel based materials for high performance pseudocapacitor electrodes. J Power Sources 267:430–444

    Article  CAS  Google Scholar 

  17. Yuan C, Wu HB, Xie Y, Lou XWD (2014) Mixed transition-metal oxides: design, synthesis, and energy-related applications. Angew Chem Int Edit 53(6):1488–1504

    Article  CAS  Google Scholar 

  18. Xia XH, Tu JP, Zhang YQ, Mai YJ, Wang XL, Gu CD, Zhao XB (2011) Three-dimensional porous nano-Ni/Co‏(OH)‏2 nanoflake composite film: a pseudocapacitive material with superior performance. J Phys Chem C 115(45):22662–22668

    Article  CAS  Google Scholar 

  19. Zhuo K, Jeong M, Chung CH (2013) Dendritic nanoporous nickel oxides for a supercapacitor prepared by a galvanic displacement reaction with chlorine ions as an accelerator. RSC Adv 3(31):12611–12615

    Article  CAS  Google Scholar 

  20. Yuan C, Li J, Hou L, Zhang X, Shen L, Lou XWD (2012) Ultrathin mesoporous NiCo2O4 nanosheets supported on Ni foam as advanced electrodes for supercapacitors. Adv Funct Mater 22(21):4592–4597

    Article  CAS  Google Scholar 

  21. Kundu M, Liu L (2013) Direct growth of mesoporous MnO2 nanosheet arrays on nickel foam current collectors for high-performance pseudocapacitors. J Power Sources 243:676–681

    Article  CAS  Google Scholar 

  22. Yang D, Velamakanni A, Bozoklu G, Park S, Stoller M, Piner RD, Ruoff RS (2009) Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and micro-Raman spectroscopy. Carbon 47(1):145–152

    Article  CAS  Google Scholar 

  23. Ferrari AC, Meyer JC, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Geim AK (2006) Raman spectrum of graphene and graphene layers. Phys Rev Lett 97(18):187401

    Article  CAS  PubMed  Google Scholar 

  24. Ramesha GK, Sampath S (2009) Electrochemical reduction of oriented graphene oxide films: an in situ Raman spectroelectrochemical study. J Phys Chem C 113(19):7985–7989

    Article  CAS  Google Scholar 

  25. Yan J, Sun W, Wei T, Zhang Q, Fan Z, Wei F (2012) Fabrication and electrochemical performances of hierarchical porous Ni‏(OH)‏2 nanoflakes anchored on graphene sheets. J MaterChem 22(23):11494–11502

    CAS  Google Scholar 

  26. Zu SZ, Han BH (2009) Aqueous dispersion of graphene sheets stabilized by pluronic copolymers: formation of supramolecular hydrogel. J Phys Chem C 113(31):13651–13657

    Article  CAS  Google Scholar 

  27. Zhou W, Cao X, Zeng Z, Shi W, Zhu Y, Yan Q, Zhang H (2013) One-step synthesis of Ni3S2 nanorod@Ni‏(OH)‏2 nanosheet core–shell nanostructures on a three-dimensional graphene network for high-performance supercapacitors. Energ Environ Sci 6(7):2216–2221

    Article  CAS  Google Scholar 

  28. Jiang C, Zhan B, Li C, Huang W, Dong X (2014) Synthesis of three-dimensional self-standing graphene/Ni‏(OH)‏2 composites for high-performance supercapacitors. RSC Adv 4(35):18080–18085

    Article  CAS  Google Scholar 

  29. Zhou G, Wang DW, Yin LC, Li N, Li F, Cheng HM (2012) Oxygen bridges between NiO nanosheets and graphene for improvement of lithium storage. ACS Nano 6(4):3214–3223

    Article  CAS  PubMed  Google Scholar 

  30. Kitaura R, Imazu N, Kobayashi K, Shinohara H (2008) Fabrication of metal nanowires in carbon nanotubes via versatile nano-template reaction. Nano Lett 8(2):693–699

    Article  CAS  PubMed  Google Scholar 

  31. Zhou J, Song H, Ma L, Chen X (2011) Magnetite/graphene nanosheet composites: interfacial interaction and its impact on the durable high-rate performance in lithium-ion batteries. Rsc Adv 1(5):782–791

    Article  CAS  Google Scholar 

  32. Peng XY, Liu XX, Diamond D, Lau KT (2011) Synthesis of electrochemically-reduced graphene oxide film with controllable size and thickness and its use in supercapacitor. Carbon 49(11):3488–3496

    Article  CAS  Google Scholar 

  33. Park S, Ruoff RS (2009) Chemical methods for the production of graphenes. Nat Nanotechnol 4(4):217

    Article  CAS  PubMed  Google Scholar 

  34. Hilder M, Winther-Jensen B, Li D, Forsyth M, MacFarlane DR (2011) Direct electro-deposition of graphene from aqueous suspensions. Phys Chem Chem Phys 13(20):9187–9193

    Article  CAS  PubMed  Google Scholar 

  35. Li W, Liu J, Yan C (2013) Reduced graphene oxide with tunable C/O ratio and its activity towards vanadium redox pairs for an all vanadium redox flow battery. Carbon 55:313–320

    Article  CAS  Google Scholar 

  36. Marcano DC, Kosynkin DV, Berlin JM, Sinitskii A, Sun Z, Slesarev A, Tour JM (2010) Improved synthesis of graphene oxide. ACS Nano 4(8):4806–4814

    Article  CAS  PubMed  Google Scholar 

  37. Chen XA, Chen X, Zhang F, Yang Z, Huang S (2013) One-pot hydrothermal synthesis of reduced graphene oxide/carbon nanotube/α-Ni‏(OH)‏2 composites for high performance electrochemical supercapacitor. J Power Sources 243:555–561

    Article  CAS  Google Scholar 

  38. Zhai T, Wang F, Yu M, Xie S, Liang C, Li C, Tong Y (2013) 3D MnO2–graphene composites with large areal capacitance for high-performance asymmetric supercapacitors. Nanoscale 5(15):6790–6796

    Article  CAS  PubMed  Google Scholar 

  39. Min S, Zhao C, Chen G, Qian X (2014) One-pot hydrothermal synthesis of reduced graphene oxide/Ni‏(OH)‏2 films on nickel foam for high performance supercapacitors. Electrochim Acta 115:155–164

    Article  CAS  Google Scholar 

  40. Wang H, Casalongue HS, Liang Y, Dai H (2010) Ni‏(OH)‏2 nanoplates grown on graphene as advanced electrochemical pseudocapacitor materials. J Am Chem Soc 132(21):7472–7477

    Article  CAS  PubMed  Google Scholar 

  41. Sugimoto W, Iwata H, Yasunaga Y, Murakami Y, Takasu Y (2003) Preparation of ruthenic acid nanosheets and utilization of its interlayer surface for electrochemical energy storage. Angew Chem Int Edit 42(34):4092–4096

    Article  CAS  Google Scholar 

  42. Zhu Y, Chu W, Wang N, Lin T, Yang W, Wen J, Zhao XS (2015) Self-assembled Ni/NiO/RGO heterostructures for high-performance supercapacitors. RSC Adv 5(95):77958–77964

    Article  CAS  Google Scholar 

  43. Zhang LB, Yang SR, Wang JQ, Xu Y, Kong XZ (2015) A facile preparation and electrochemical properties of nickel based compound–graphene sheet composites for supercapacitors. Chinese Chem Lett 26(5):522–528

    Article  CAS  Google Scholar 

  44. Zhu X, Dai H, Hu J, Ding L, Jiang L (2012) Reduced graphene oxide–nickel oxide composite as high performance electrode materials for supercapacitors. J Power Sources 203:243–249

    Article  CAS  Google Scholar 

  45. Liu X, Zhang K, Yang B, Song W, Liu Q, Jia F, Li J (2016) Three-dimensional graphene skeletons supported nickel molybdate nanowire composite as novel ultralight electrode for supercapacitors. Mater Lett 164:401–404

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changiz Dehghanian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mirzaee, M., Dehghanian, C. & Sarbishei, S. Facile synthesis of nano dendrite-structured Ni–NiO foam/ERGO by constant current method for supercapacitor applications. J Appl Electrochem 48, 923–935 (2018). https://doi.org/10.1007/s10800-018-1229-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-018-1229-8

Keywords

Navigation