Skip to main content
Log in

Activity correction in a moving-boundary model for electrochemical lithium intercalation and discharge/charge voltage in LiCoO2 electrodes

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

A moving-boundary model with activity correction for the diffusion of lithium in LiCoO2 electrodes and the electrochemical reaction on the surface of electrode particles was formulated in a reproduction of the discharge/charge voltage process in batteries that have a LiCoO2 cathode and a mesocarbon-microbead anode. Activity correction for the electrochemical reaction as well as the diffusion of lithium where the LiCoO2 structural phase transition occurs during discharge and charge was considered. An accurate representation of the discharge/charge voltage profiles was obtained by using the moving-boundary model with the activity correction. The activity correction incorporated into the moving-boundary model can improve the discontinuous gaps in the discharge voltage profiles at the surface of conjugate LiCoO2 electrode particles.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Reimer JN, Dahn JR (1992) Electrochemical and in situ X-ray diffraction studies of lithium intercalation in LixCoO2. J Electrochem Soc 139:2091–2097

    Article  Google Scholar 

  2. Ohzuku T, Ueda T (1994) Solid-state redox reactions of LiCoO2 for 4 Volt secondary lithium cells. J Electrochem Soc 141:2972–2977

    Article  CAS  Google Scholar 

  3. Amatucci GG, Trascon JM, Klein LC (1996) CoO2, the end member of the LixCoO2 solid solution. J Electrochem Soc 143:1114–1123

    Article  CAS  Google Scholar 

  4. Trascon JM, Vaughan G, Charbre Y, Sequin M, Anne M, Strobel P, Amatucci GG (1999) In situ structural and electrochemical study of Ni1–xCoxO2 metastable oxides prepared by soft chemistry. J Solid State Chem 147:410–420

    Article  Google Scholar 

  5. Chen Z, Lu Z, Dahn JR (2002) Staging phase transition in LixCoO2. J Electrochem Soc 149:A1604–A1609

    Article  CAS  Google Scholar 

  6. Paulsen JM, Mueller-Neuhaus JR, Dahn JR (2000) Layered LiCoO2 with a different oxygen stacking (O2 structure) as a cathode material for rechargeable lithium batteries. J Electrochem Soc 147:508–516

    Article  CAS  Google Scholar 

  7. Molenda J, Stoklosa A, Bak T (1989) Modification in the electronic structure of bronze LixCoO2 and the resulting electrochemical properties. Solid State Ion 36:53–58

    Article  CAS  Google Scholar 

  8. Ménétrier M, Saadoune I, Levasseur S, Delmas C (1999) The insulator–metal transition upon lithium deintercalation from LiCoO2: electronic properties and 7Li NMR. J Mater Chem 9:1135–1140

    Article  Google Scholar 

  9. Abe T, Koyama T (2011) Thermodynamic modeling of the LiCoO2–CoO2 pseudo-binary system. CALPHAD 35:209–218

    Article  CAS  Google Scholar 

  10. Chang K, Hallstedt B, Music D, Fischer J, Ziebert C, Ulrich S, Seifert HJ (2013) Thermodynamic description of the layered O3 and O2 structural LiCoO2–CoO2 pseudo-binary system. CALPHAD 41: 6–15

    Article  CAS  Google Scholar 

  11. Srinivasan V, Newman J (2014) Discharge model for the lithium iron-phosphate electrode. J Electrochem Soc 151:A1517–A1529

    Article  Google Scholar 

  12. Shin H, Pyun S (1999) An Investigation of the electrochemical intercalation of lithium into a Li1–δCoO2 electrode based upon numerical analysis of potentiostatic current transients. Electrochim Acta 44:2235–2244

    Article  CAS  Google Scholar 

  13. Shin H, Pyun S (1999) The kinetics of lithium transport through Li1–δCoO2 by theoretical analysis of current transient. Electrochim Acta 45:489–501

    Article  CAS  Google Scholar 

  14. Zhang Q, White RE (2007) Moving boundary model for the discharge of a LiCoO2 electrode. J Electrochem Soc 154:A587–A596

    Article  CAS  Google Scholar 

  15. Tatsukawa E, Tamura K (2014) Activity correction on electrochemical reaction and diffusion in lithium intercalation electrodes for discharge/charge simulation by single particle model. Electrochim Acta 115:75–85

    Article  CAS  Google Scholar 

  16. Bard AJ, Faulkner LR (1980) Electrochemical methods, fundamentals and applications. Wile, New York

    Google Scholar 

  17. Renon H, Prausnitz JM (1968) Local compositions in thermodynamic excess functions for liquid mixtures. AIChE J 14:135–144

    Article  CAS  Google Scholar 

  18. Santhanagopalan S, Guo Q, White RE (2007) Parameter Estimation and model discrimination for a lithium-ion cell. J Electrochem Soc 154:A198–A206

    Article  CAS  Google Scholar 

  19. Santhanagopalan S, Guo Q, Ramadass P, White RE (2006) Review of models for predicting the cycling performance of lithium ion batteries. J Power Sour 156:620–628

    Article  CAS  Google Scholar 

  20. Subramanian VR, Tapriyal D, White RE (2004) A boundary condition for porous electrode. Electrochem Sol State Lett 7: A259–A263

    Article  CAS  Google Scholar 

  21. Ramadass P, Haran BS, Gomadam PM, White RE, Popov BN (2004) Development of first principles capacity fade model for Li-ion cells. J Electrochem Soc 151:A196–A203

    Article  CAS  Google Scholar 

  22. Courant R, Isaacson E, Rees M (1952) On the solution of nonlinear hyperbolic differential equations by finite differences. Commun Pure Appl Math 5: 243–255

    Article  Google Scholar 

  23. Crank J, Nicolson P (1996) A practical method for numerical evaluation of solutions of partial differential equation of the heat-conduction type. Adv Comput Math 6: 207–226

    Article  Google Scholar 

  24. Gill PE, Murray W (1978) Algorithms for the solution of nonlinear least-squares problems. SIAM J Numer Anal 15:977–992

    Article  Google Scholar 

  25. Lagarias JC, Reeds JA, Wright MH, Wright PE (1998) Convergence properties of the nelder-mead simplex method in low dimensions. SIAM J Optim 9:112–147

    Article  Google Scholar 

  26. Tatsukawa E, Ikeda T, Tamura K (2013) Application of Gibbs energy model to equilibrium potential for structural phase transition in lithium intercalation process. Fluid Phase Equilib 357: 19–23

    Article  CAS  Google Scholar 

  27. Lee J-W, Hwang D (2015) Application of thermodynamic activity models to the equilibrium potential for lithium intercalation process of a cobalt-free cathode material with a layered structure. Comput Mater Sci 100:80–83

    Article  CAS  Google Scholar 

  28. Ramadass P, Haran BS, White RE, Popov BN (2003) Mathematical modeling of the capacity fade Li-Ion cells. J Power Sour 123:230–240

    Article  CAS  Google Scholar 

  29. Sikha G, Popov BN, White RE (2004) Effect of porosity on the capacity fade of a lithium-ion battery theory. J Electrochem Soc 151:A1104–A1114

    Article  CAS  Google Scholar 

  30. Markevivh E, Levi MD, Aurbach D (2005) Comparison between potentiostatic and galvanostatic intermittent titration techniques for determination of chemical diffusion coefficients in ion-insertion electrode. Electroanal Chem 580:231–237

    Article  Google Scholar 

  31. Xie J, Imanishi N, Matsumura T, Hirano A, Takeda Y, Yamamoto O (2008) Orientation dependence of Li-Ion diffusion kinetics in LiCoO2 thin films prepared by RF magnetron sputtering. Solid State Ion 179:362–370

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuhiro Tamura.

Ethics declarations

Conflict of interest

The authors declare that they have no competing financial interests.

Appendices

Appendix 1

Diffusion fluxes of lithium intercalated \({{J}_{\text{p}}}\) are given by Eq. 1, and defined by the chemical potential of lithium \({{\mu }_{\text{1,p}}}\)

$$ \begin{aligned} J_{{\text{p}}} & = - D_{{1,{\text{p}}}} \frac{{c_{{1,{\text{p}}}} }}{{RTR_{{\text{p}}} }}\frac{{\partial \mu _{{1,{\text{p}}}} (t,\overline{r} )}}{{\partial \overline{r} }} = - D_{{1{\text{,p}}}} \frac{{c_{{1,{\text{p}}}} }}{{R_{{\text{p}}} }}\frac{{\partial \ln a_{{1,{\text{p}}}} (t,\overline{r} )}}{{\partial \overline{r} }} = - D_{{{\text{1,p}}}} \frac{{c_{{1,{\text{p}}}} }}{{R_{{\text{p}}} }}\frac{{\partial \ln x_{{1,{\text{p}}}} (t,\overline{r} )\gamma _{{1,{\text{p}}}} (t,\overline{r} )}}{{\partial \overline{r} }} \\ & = - D_{{1,{\text{p}}}} \frac{{c_{{{\text{1,p}}}} }}{{R_{{\text{p}}} }}\left( {\frac{{\partial x_{{1,{\text{p}}}} (t,\overline{r} )}}{{\partial \overline{r} }}} \right)\frac{{{\text{d}}\ln x_{{1,{\text{p}}}} (t,\overline{r} )\gamma _{{1,{\text{p}}}} (t,\overline{r} )}}{{{\text{d}}x_{{1,{\text{p}}}} (t,\overline{r} )}} = - D_{{{\text{1,p}}}} \frac{{c_{{1,{\text{p}}}} }}{{R_{{\text{p}}} x_{{1,{\text{p}}}} (t,\overline{r} )}}\left( {1 + \frac{{x_{{{\text{1,p}}}} (t,\overline{r} )}}{{\gamma _{{1,{\text{p}}}} (t,\overline{r} )}}\frac{{{\text{d}}\gamma _{{1,{\text{p}}}} (t,\overline{r} )}}{{{\text{d}}x_{{1,{\text{p}}}} (t,\overline{r} )}}} \right)\frac{{\partial x_{{1,p}} (t,\overline{r} )}}{{\partial \overline{r} }} \\ & = - D_{{1,{\text{p}}}} \frac{{c_{{1,{\text{p}}}} }}{{R_{{\text{p}}} x_{{1,{\text{p}}}} (t,\overline{r} )}}\left( {1 + \frac{{\partial \ln \gamma _{{1,{\text{p}}}} (t,\overline{r} )}}{{\partial \ln x_{{1,{\text{p}}}} (t,\overline{r} )}}} \right)\frac{{\partial x_{{1,{\text{p}}}} (t,\overline{r} )}}{{\partial \overline{r} }}. \\ \end{aligned} $$
(19)

On the other hand, the diffusion flux of lithium intercalated is defined by the effective diffusion coefficient.

$${{J}_{\text{p}}}=-{{D}_{\text{eff,p}}}\frac{c_{_{1,\text{p}}}^{\max }}{{{R}_{\text{p}}}}\frac{\partial {{x}_{1,\text{p}}}(t,\overline{r})}{\partial \overline{r}}.$$
(20)

Using the relation between \(c_{1,\,\text{p}}^{\max }\) the maximum lithium concentration, the concentration of lithium c 1,p, and the mole fraction of lithium intercalated \({{x}_{\text{1,p}}}(t,\overline{r})\),

$$c_{_{1,\text{p}}}^{\max }{{x}_{1,\text{p}}}(t,\overline{r})={{c}_{1,\text{p}}},$$
(21)

and equating of Eq. (19) with Eq. (20), we can derive the effective diffusion coefficient.

$${{D}_{\text{eff,p}}}={{D}_{1,\text{p}}}\left( 1+\frac{\partial \ln {{\gamma }_{\text{1,p}}}(t,\overline{r})}{\partial \ln {{x}_{1,\text{p}}}(t,\overline{r})} \right)$$
(22)

which is equivalent to Eq. (3).

Appendix 2

The equilibrium potential E eq between the lithium intercalated in the bulk electrode and lithium metal in the reference electrode is represented as follows:

$${{E}^{\text{eq}}}={{E}^{\circ }}+\frac{RT}{F}\ln \left( \frac{{{a}_{2}}}{{{a}_{1}}} \right)={{E}^{\circ }}+\frac{RT}{F}\ln \left( \frac{{{x}_{2}}}{{{x}_{1}}} \right)+\frac{RT}{F}\ln \left( \frac{{{\gamma }_{2}}}{{{\gamma }_{1}}} \right),$$
(23)

where \({{E}^{\circ }}\) is the standard equilibrium potential; a 1 and a 2 are the activity for the active material intercalated by lithium and the vacant active material in the bulk electrode phase, respectively; and the activity a i is defined by a i  = x i γ i with the activity coefficient γ i . If phase separation occurs at mole fractions \(x_{i}^{\alpha }\) of phase α and \(x_{i}^{\beta }\) of phase β in the discharge/charge process for a LiCoO2 electrode, the activities of lithium and vacant active material are characterized by

$${{a}_{1}}(x_{1}^{\alpha })={{a}_{1}}(x_{1}^{\beta })\ \text{and}\ {{a}_{2}}(x_{2}^{\alpha })={{a}_{2}}(x_{2}^{\beta }).$$
(24)

We obtained the thermodynamic criteria of the phase separation in terms of the molar Gibbs energy of mixing g M.

$${{\left. \frac{\text{d}{{g}^{\text{M}}}}{\text{d}{{x}_{1}}} \right|}_{{{x}_{1}}=x_{1}^{\alpha }}}={{\left. \frac{\text{d}{{g}^{\text{M}}}}{\text{d}{{x}_{1}}} \right|}_{{{x}_{1}}=x_{1}^{\beta }}}\ \text{and}\ \frac{{{\text{d}}^{2}}{{g}^{\text{M}}}}{\text{d}{{x}_{1}}^{2}}\ge 0.$$
(25)

The relationship between the molar Gibbs energy of mixing and equilibrium potential is given by

$$\frac{\text{d}{{g}^{\text{M}}}}{\text{d}{{x}_{1}}}=-F({{E}^{\text{eq}}}-{{E}^{\circ }}).$$
(26)

The activity coefficients of the binary system, given by the NRTL model of Renon and Prausnitz [17], are

$$\begin{matrix} \ln {{\gamma }_{1}}=x_{2}^{2}\left[ {{\tau }_{12}}{{\left( \frac{{{G}_{21}}}{{{x}_{1}}+{{x}_{2}}{{G}_{21}}} \right)}^{2}}+\frac{{{\tau }_{12}}{{G}_{12}}}{{{\left( {{x}_{2}}+{{x}_{1}}{{G}_{12}} \right)}^{2}}} \right], \\ \ln {{\gamma }_{2}}=x_{1}^{2}\left[ {{\tau }_{12}}{{\left( \frac{{{G}_{12}}}{{{x}_{2}}+{{x}_{1}}{{G}_{12}}} \right)}^{2}}+\frac{{{\tau }_{21}}{{G}_{21}}}{{{\left( {{x}_{1}}+{{x}_{2}}{{G}_{21}} \right)}^{2}}} \right], \\\end{matrix}$$

where the binary parameters are defined as

$${{\tau }_{12}}=\frac{\Delta {{g}_{12}}}{RT}\, , \,{{\tau }_{21}}=\frac{\Delta {{g}_{21}}}{RT}$$
(27)
$$ G_{{12}} = \exp ( - \alpha _{{12}} \tau _{{12}} ),\;G_{{21}} = \exp \left( { - \alpha _{{12}} \tau _{{21}} } \right) $$
(28)

where \(\Delta {{g}_{12}}\) and \(\Delta {{g}_{21}}\) are the binary energy parameters characterized by species 1 and 2 interactions, respectively, and the non-randomness α 12 is treated as an adjustable parameter. The adjustable parameters of the NRTL model, \(\Delta {{g}_{12}}\), \(\Delta {{g}_{21}}\), and α 12, were obtained by fitting the models to the experimental results. For the LiCoO2 electrode, the phase transition points of each phase \(x_{1}^{\alpha }\) and \(x_{1}^{\beta }\) were determined by solving the thermodynamic criteria of the phase separation with the adjustable binary parameters in the NRTL model. Figure 5a shows the equilibrium potential curve for the LiCoO2 cathode as calculated by the NRTL model with heterogeneous treatment using Eq. (24)–(26).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tamura, K., Tatsukawa, E. Activity correction in a moving-boundary model for electrochemical lithium intercalation and discharge/charge voltage in LiCoO2 electrodes. J Appl Electrochem 47, 381–392 (2017). https://doi.org/10.1007/s10800-016-1042-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-016-1042-1

Keywords

Navigation