Skip to main content

Advertisement

Log in

Effect of bisphosphonates treatment on cytokine imbalance between TH17 and Treg in osteoporosis

  • Research Article
  • Published:
Inflammopharmacology Aims and scope Submit manuscript

Abstract

Imbalance of T-helper-cell (TH) subsets (TH1/TH2/TH17) and regulatory T cells (Tregs) is suggested to contribute to the pathogenesis of osteoporosis. Broken TH17/Treg balance has been reported contributing to several inflammatory diseases. Although bisphosphonates are well-recognized inhibitors of osteoclastic activity, there is no serious examination of their effect on T cell subset (TH1/TH2/TH17/Treg) balances. Patients were categorized into 20 osteopenic and 20 osteoporotic patients treated with bisphosphonates for 1 year. We studied plasma levels of interleukins 4 (IL-4), IL-6, IL-10, IL-12, IL-17, IL-23, and interferon-gamma (IFN-γ), and transforming growth factor-beta (TGF-β) and their interrelations and correlation with osteoporosis treatment were evaluated. Treated osteoporotic patients have a significant reduction of plasma IL-6 (p < 0.05), IL-17 (p < 0.05), IL-23 (p < 0.05), and IFN-γ (p < 0.05), a significant increase in IL-4 (p < 0.05), IL-10 (p < 0.05), and TGF-β (p < 0.001), and comparable IL-12 levels as compared to controls. In conclusion, the significant reduction of Th17 cell cytokine cascade (IL-6, IL-17, and IL-23) and elevation of Treg cytokine cascade (IL-10 and TGF-β) might be considered as a very important observation about the effect of bisphosphonates on TH17/Treg imbalance in osteoporosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abdelmagid SM, Barbe MF, Safadi FF (2015) Role of inflammation in the aging bones. Life Sci 123:25–34

    Article  CAS  PubMed  Google Scholar 

  • Baker PJ (2000) The role of immune responses in bone loss during periodontal disease. Microbes Infect 2(10):1181–1192

    Article  CAS  PubMed  Google Scholar 

  • Bertolini DR, Nedwin GE, Bringman TS, Smith DD, Mundy GR (1986) Stimulation of bone resorption and inhibition of bone formation in vitro by human tumour necrosis factors. Nature 319(6053):516–518

    Article  CAS  PubMed  Google Scholar 

  • Boskey AL, Spevak L, Weinstein RS (2009) Spectroscopic markers of bone quality in alendronate-treated postmenopausal women. Osteoporos Int 20:793–800

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Brunkow ME, Jeffery EW, Hjerrild KA, Paeper B, Clark LB, Yasayko SA, Wilkinson JE, Galas D, Ziegler SF, Ramsdell F (2001) Disruption of a new forkhead/winged-helix protein, scurfin, results in the fatal lymphoproliferative disorder of the scurfy mouse. Nat Genet 27:68–73

    Article  CAS  PubMed  Google Scholar 

  • Cantatore FP, Acquista CA, Pipitone V (1999) Evaluation of bone turnover and osteoclastic cytokines in early rheumatoid arthritis treated with alendronate. J Rheumatol 26:2318–2323

    CAS  PubMed  Google Scholar 

  • Dong C (2006) Diversification of T-helper-cell lineages: finding the family root of IL-17-producing cells. Nat Rev Immunol 6(4):329–333

    Article  CAS  PubMed  Google Scholar 

  • Ducy P, Schinke T, Karsenty G (2000) The osteoblast: a sophisticated fibroblast under central surveillance. Science 289:1501–1504

    Article  CAS  PubMed  Google Scholar 

  • Feng X, McDonald J (2011) Disorders of bone remodeling. Annu Rev Pathol 6:121–145

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Giuliani N, Girasole G, PedrazzoniM Passeri G, Gatti C, Passeri M (1995) Alendronate stimulates b-FGF production and mineralized nodule formation in human osteoblastic cells and osteoblastogenesis in human bone marrow cultures. J Bone Miner Res 10:S171

    Google Scholar 

  • Gowen M, Wood DD, Ihrie EJ, McGuire MK, Russell RG (1983) An interleukin 1-like factor stimulates bone resorption in vitro. Nature 306(5941):378–380

    Article  CAS  PubMed  Google Scholar 

  • Grcević D, Katavić V, Lukić IK, Kovacić N, Lorenzo JA, Marusić A (2001) Cellular and molecular interactions between immune system and bone. Croat Med J. 42(4):384–392

    PubMed  Google Scholar 

  • Hill PA, Tumber A, Papaioannou S, Meikle MC (1998) The cellular actions of interleukin-11 on bone resorption in vitro. Endocrinology 139(4):1564–1572

    Article  CAS  PubMed  Google Scholar 

  • Ishimi Y, Miyaura C, Jin CH, Akatsu T, Abe E, Nakamura Y, Yamaguchi A, Yoshiki S, Matsuda T, Hirano T et al (1990) IL-6 is produced by osteoblasts and induces bone resorption. J Immunol 145(10):3297–3303

    CAS  PubMed  Google Scholar 

  • Kanis JA, Melton LJ, Christiansen C, Johnston CC, Khaltaev N (1994) The diagnosis of osteoporosis. J Bone Miner Res 9:1137–1141

    Article  CAS  PubMed  Google Scholar 

  • Kong YY, Feige U, Sarosi I, Bolon B, Tafuri A, Morony S, Capparelli C, Li J, Elliott R, McCabe S, Wong T, Campagnuolo G, Moran E, Bogoch ER, Van G, Nguyen LT, Ohashi PS, Lacey DL, Fish E, Boyle WJ, Penninger JM (1999) Activated T cells regulate bone loss and joint destruction in adjuvant arthritis through osteoprotegerin ligand. Nature 402(6759):304–309

    Article  CAS  PubMed  Google Scholar 

  • Kotake S, Udagawa N, Takahashi N, Matsuzaki K, Itoh K, Ishiyama S, Saito S, Inoue K, Kamatani N, Gillespie MT, Martin TJ, Suda T (1999) IL-17 in synovial fluids from patients with rheumatoid arthritis is a potent stimulator of osteoclastogenesis. J Clin Invest 103:1345–1352

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Miyaura C, Kusano K, Masuzawa T, Chaki O, Onoe Y, Aoyagi M, Sasaki T, Tamura T, Koishihara Y, Ohsugi Y et al (1995) Endogenous bone-resorbing factors in estrogen deficiency: cooperative effects of IL-1 and IL-6. J Bone Miner Res 10(9):1365–1373

    Article  CAS  PubMed  Google Scholar 

  • Mosmann TR, Cherwinski H, Bond MW, Giedlin MA, Coffman RL (1986) Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. J Immunol 136:2348–2357

    CAS  PubMed  Google Scholar 

  • Nakamura M, Uehara S, Nakamura H, Udagawa N (2014) Cytokine-mediated bone resorption. Clin Calcium 24(6):837–844

    CAS  PubMed  Google Scholar 

  • Passeri G, Girasole G, Uljetti V, Guiliani N, Pedrazzoni M, Sartori L, Jilka RL, Manolagas SC (1994) Bisphosphonates inhibit IL-6 production by human osteoblastic cells MG-63. J Bone Miner Res 9(suppl):S230

    Google Scholar 

  • Rachner TD, Khosla S, Hofbauer LC (2011) Osteoporosis: now and the future. Lancet 377:1276–1287

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Reinholz GG, Getz B, Pederson L, Sanders ES, Subramaniam M, Ingle JN, Spelsberg TC (2000) Bisphosphonates directly regulate cell proliferation, differentiation, and gene expression in human osteoblasts. Cancer Res 60:6001–6007

    CAS  PubMed  Google Scholar 

  • Ro C, Cooper O (2013) Bisphosphonate drug holiday: choosing appropriate candidates. Curr Osteoporos Rep 11:45–51

    Article  PubMed Central  PubMed  Google Scholar 

  • Rodan GA, Martin TJ (2000) Therapeutic approaches to bone diseases. Science 289(5484):1508–1514

    Article  CAS  PubMed  Google Scholar 

  • Sakaguchi S (2005) Naturally arising Foxp3-expressing CD25+CD4+regulatory T cells in immunological tolerance to self and non-self. Nat Immunol 6:345–352

    Article  CAS  PubMed  Google Scholar 

  • Sakaguchi S, Ono M, Setoguchi R, Yagi H, Hori S, Fehervari Z, Shimizu J, Takahashi T, Nomura T (2006) Foxp3-CD25-CD4- natural regulatory T cells in dominant self-tolerance and autoimmune disease. Immunol Rev 212:8–27

    Article  CAS  PubMed  Google Scholar 

  • Sato K, Takayanagi H (2006) Osteoclasts, rheumatoid arthritis, and osteoimmunology. Curr Opin Rheumatol 18(4):419–426

    Article  CAS  PubMed  Google Scholar 

  • Sato K, Suematsu A, Okamoto K, Yamaguchi A, Morishita Y, Kadono Y, Tanaka S, Kodama T, Akira S, Iwakura Y, Cua DJ, Takayanagi H (2006) Th17 functions as an osteoclastogenic helper T cell subset that links T cell activation and bone destruction. J Exp Med 203(12):2673–2682

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sato M, Nakamichi Y, Nakamura M, Sato N, Ninomiya T, Muto A, Nakamura H, Ozawa H, Iwasaki Y, Kobayashi E, Shimizu M, DeLuca HF, Takahashi N, Udagawa N (2007) New 19-nor-(20S)-1alpha,25-dihydroxyvitamin D3 analogs strongly stimulate osteoclast formation both in vivo and in vitro. Bone 40(2):293–304

    Article  CAS  PubMed  Google Scholar 

  • Schenk R, Eggli P, Fleisch H, Rosini S (1986) Quantitative morphometric evaluation of the inhibitory activity of new aminophosphonates on bone resorption in the rat. Calif Tissue Int 38:342–349

    Article  CAS  Google Scholar 

  • Steeve K, Marc P, Sandrine T, Dominique H, Yannick F (2004) IL-6, RANKL, TNF-α/IL-1 interactions in bone resorption pathophysiology. Cytokine Growth Factor Rev 15:49–60

    Article  CAS  Google Scholar 

  • Suresh E, Pazianas M, Abrahamsen B (2014) Safety issues with bisphosphonate therapy for osteoporosis. Rheumatology 53:19–31

    Article  CAS  PubMed  Google Scholar 

  • Takayanagi H (2005) Inflammatory bone destruction and osteoimmunology. J Periodontal Res 40:287–293

    Article  CAS  PubMed  Google Scholar 

  • Takayanagi H, Ogasawara K, Hida S, Chiba T, Murata S, Sato K, Takaoka A, Yokochi T, Oda H, Tanaka K, Nakamura K, Taniguchi T (2000) T-cell-mediated regulation of osteoclastogenesis by signalling cross-talk between RANKL and IFN-γ. Nature 408(6812):600–605

    Article  CAS  PubMed  Google Scholar 

  • Talaat RM, El-Bassiouny AI, Osman AM, Yossif M, Charmy R, Al-Sherbiny MM (2007) Cytokine secretion profile associated with periportal fibrosis in S. mansoni-infected Egyptian patients. Parasitol Res 101(2):289–299

    Article  PubMed  Google Scholar 

  • Teitelbaum SL (2000) Bone resorption by osteoclasts. Science 289:1504–1508

    Article  CAS  PubMed  Google Scholar 

  • Theill LE, Boyle WJ, Penninger JM (2002) RANK-L and RANK: T cells, bone loss, and mammalian evolution. Annu Rev Immunol 20:795–823

    Article  CAS  PubMed  Google Scholar 

  • von Knoch F, Jaquiery C, Kowalsky M, Schaeren S, Alabre C, Martin I, Rubash HE, Shanbhag AS (2005) Effects of bisphosphonates on proliferation and osteoblast differentiation of human bone marrow stromal cells. Biomaterials 26(34):6941–6949

    Article  Google Scholar 

  • Walsh MC, Kim N, Kadono Y, Rho J, Lee SY, Lorenzo J, Choi Y (2006) Osteoimmunology: interplay between the immune system and bone metabolism. Annu Rev Immunol 24:33–63

    Article  CAS  PubMed  Google Scholar 

  • Weaver CT, Harrington LE, Mangan PR, Gavrieli M, Murphy KM (2006) Th17: an effector CD4 T cell lineage with regulatory T cell ties. Immunity 24(6):677–688

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of interest

The authors declare no conflict of interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roba M. Talaat.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Talaat, R.M., Sidek, A., Mosalem, A. et al. Effect of bisphosphonates treatment on cytokine imbalance between TH17 and Treg in osteoporosis. Inflammopharmacol 23, 119–125 (2015). https://doi.org/10.1007/s10787-015-0233-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10787-015-0233-4

Keywords

Navigation