Skip to main content
Log in

Periprosthetic osteolysis after total hip replacement: molecular pathology and clinical management

  • Review
  • Published:
Inflammopharmacology Aims and scope Submit manuscript

Abstract

Periprosthetic osteolysis is a serious complication of total hip replacement (THR) in the medium to long term. Although often asymptomatic, osteolysis can lead to prosthesis loosening and periprosthetic fracture. These complications cause significant morbidity and require complex revision surgery. Here, we review advances in our understanding of the cell and tissue response to particles produced by wear of the articular and non-articular surfaces of prostheses. We discuss the molecular and cellular regulators of osteoclast formation and bone resorptive activity, a better understanding of which may lead to pharmacological treatments for periprosthetic osteolysis. We describe the development of imaging techniques for the detection and measurement of osteolysis around THR prostheses, which enable improved clinical management of patients, provide a means of evaluating outcomes of non-surgical treatments for periprosthetic osteolysis, and assist in pre-operative planning for revision surgery. Finally, there have been advances in the materials used for bearing surfaces to minimise wear, and we review the literature regarding the performance of these new materials to date.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alias E, Dharmapatni AS, Holding AC, Atkins GJ, Findlay DM, Howie DW, Crotti TN, Haynes DR (2012) Polyethylene particles stimulate expression of ITAM-related molecules in peri-implant tissues and when stimulating osteoclastogenesis in vitro. Acta Biomater 8:3104–3112

    Article  PubMed  CAS  Google Scholar 

  • Arabmotlagh M, Pilz M, Warzecha J, Rauschmann M (2009) Changes of femoral periprosthetic bone mineral density 6 years after treatment with alendronate following total hip arthroplasty. J Orthop Res 27:183–188

    Article  PubMed  Google Scholar 

  • Asagiri M, Takayanagi H (2007) The molecular understanding of osteoclast differentiation. Bone 40:251–264

    Article  PubMed  CAS  Google Scholar 

  • Atkins GJ, Findlay DM (2012) Osteocyte regulation of bone mineral: a little give and take. Osteoporos Int 23:2067–2079

    Article  PubMed  CAS  Google Scholar 

  • Atkins GJ, Welldon KJ, Holding CA, Haynes DR, Howie DW, Findlay DM (2009) The induction of a catabolic phenotype in human primary osteoblasts and osteocytes by polyethylene particles. Biomaterials 30:3672–3681

    Article  PubMed  CAS  Google Scholar 

  • Bradford L, Baker DA, Graham J, Chawan A, Ries MD, Pruitt LA (2004) Wear and surface cracking in early retrieved highly cross-linked polyethylene acetabular liners. J Bone Joint Surg Am 86:1271–1282

    PubMed  Google Scholar 

  • Chiang PP, Burke DW, Freiberg AA, Rubash HE (2003) Osteolysis of the pelvis. Evaluation and treatment. Clin Orthop Relat Res 417:164–174

    PubMed  Google Scholar 

  • Crotti TN, Smith MD, Findlay DM, Zreiqat H, Ahern MJ, Weedon H, Hatzinikolous G, Capone M, Holding C, Haynes DR (2004) Factors regulating osteoclast formation in human tissues adjacent to peri-implant bone loss: expression of receptor activator NFkappaB, RANK ligand and osteoprotegerin. Biomaterials 25:565–573

    Article  PubMed  CAS  Google Scholar 

  • Endo M, Tipper JL, Barton DC, Stone MH, Ingham E, Fisher J (2002) Comparison of wear, wear debris and functional biological activity of moderately crosslinked and non-crosslinked polyethylenes in hip prostheses. **Proc Instn Mech Engrs Part H 216:111–122

    Article  CAS  Google Scholar 

  • Engh AC Jr, Sychterz CJ, Young AM, Pollock DC, Toomey SD, Engh CA Sr (2002) Interobserver and intraobserver variability in radiographic assessment of osteolysis. J Arthroplasty 17:752–759

    Article  PubMed  Google Scholar 

  • Engh CA Jr, Egawa H, Beykirch SE, Hopper RH, Engh CA (2007) The quality of osteolysis grafting with cementless acetabular component retention. Clin Orthop Relat Res 465:150–154

    PubMed  Google Scholar 

  • Engh CA Jr, Hopper RH Jr, Huynh C, Ho H, Sritulanondha S, Engh CA Sr (2012) A prospective, randomized study of cross-linked and non cross-linked polyethylene for total hip arthroplasty at 10-year follow-up. J Arthroplasty 27:2–7

    Article  PubMed  Google Scholar 

  • Fuller K, Murphy C, Kirstein B, Fox SW, Chambers TJ (2002) TNFα potently activates osteoclasts, through a direct action independent of and strongly synergistic with RANKL. Endocrinology 143:1108–1118

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Cimbrelo E, Tapia M, Martin-Hervas C (2007) Multislice computed tomography for evaluating acetabular defects in revision THA. Clin Orthop Relat Res 463:138–143

    PubMed  Google Scholar 

  • Gehrke T, Sers C, Morawietz L, Fernahl G, Neidel J, Frommelt L, Krenn V (2003) Receptor activator of nuclear factor kappaB ligand is expressed in resident and inflammatory cells in aseptic and septic prosthesis loosening. Scand J Rheumatol 32:287–294

    Article  PubMed  CAS  Google Scholar 

  • Goater JJ, O’Keefe RJ, Rosier RN, Puzas JE, Schwarz EM (2002) Efficacy of ex vivo OPG gene therapy in preventing wear debris induced osteolysis. J Orthop Res 20:169–173

    Article  PubMed  CAS  Google Scholar 

  • Green TR, Fisher J, Stone M, Wroblewski BM, Ingham E (1998) Polyethylene particles of a “critical size” are necessary for the induction of cytokines by macrophages in vitro. Biomaterials 19:2297–2302

    Article  PubMed  CAS  Google Scholar 

  • Harris WH (1995) The problem is osteolysis. Clin Orthop Relat Res 311:46–53

    PubMed  Google Scholar 

  • Haynes DR, Rogers SD, Hay S, Pearcy MJ, Howie DW (1993) The differences in toxicity and release of bone-resorbing mediators induced by titanium and cobalt-chromium-alloy wear particles. J Bone Joint Surg Am 75:825–834

    PubMed  CAS  Google Scholar 

  • Haynes DR, Crotti TN, Potter AE, Loric M, Atkins GJ, Howie DW, Findlay DM (2001) The osteoclastogenic molecules RANKL and RANK are associated with periprosthetic osteolysis. J Bone Joint Surg Br 83:902–911

    Article  PubMed  CAS  Google Scholar 

  • Haynes DR, Crotti TN, Zreiqat H (2004) Regulation of osteoclast activity in peri-implant tissues. Biomaterials 25:4877–4885

    Article  PubMed  CAS  Google Scholar 

  • Holding CA, Findlay DM, Stamenkov R, Neale SD, Lucas H, Dharmapatni AS, Callary SA, Shrestha KR, Atkins GJ, Howie DW, Haynes DR (2006) The correlation of RANK, RANKL and TNFalpha expression with bone loss volume and polyethylene wear debris around hip implants. Biomaterials 27:5212–5219

    Article  PubMed  CAS  Google Scholar 

  • Howie DW (1990) Tissue response in relation to type of wear particles around failed hip arthroplasties. J Arthroplasty 5:337–348

    Article  PubMed  CAS  Google Scholar 

  • Howie DW, Vernon-Roberts B (1988a) The synovial response to intraarticular cobalt-chrome wear particles. Clin Orthop Relat Res 232:244–254

    PubMed  CAS  Google Scholar 

  • Howie DW, Vernon-Roberts B (1988b) Long term effects of intraarticular cobalt-chrome alloy wear particles in rats. J Arthroplasty 3:327–336

    Article  PubMed  CAS  Google Scholar 

  • Howie DW, Vernon-Roberts B, Oakeshott R, Manthey B (1988) A rat model of resorption of bone at the cement-bone interface in the presence of polyethylene wear particles. J Bone Joint Surg Am 70:257–263

    PubMed  CAS  Google Scholar 

  • Howie DW, Cornish BL, Vernon-Roberts B (1990) Resurfacing hip arthroplasty: classification of loosening and the role of prosthesis wear particles. Clin Orthop Relat Res 255:144–159

    PubMed  Google Scholar 

  • Howie DW, Manthey B, Hay S, Vernon-Roberts B (1993) The synovial response to intraarticular injection in rats of polyethylene wear particles. Clin Orthop Relat Res 292:352–357

    PubMed  Google Scholar 

  • Howie DW, Neale SD, Stamenkov R, McGee MA, Taylor DJ, Findlay DM (2007) Progression of acetabular periprosthetic osteolytic lesions measured by computed tomography. J Bone Joint Surg Am 89:1818–1825

    Article  PubMed  Google Scholar 

  • Howie DW, Neale SD, Martin W, Costi K, Kane T, Stamenkov R, Findlay DM (2012) Progression of periacetabular osteolytic lesions. J Bone Joint Surg Am 94:e1171–e1176

    PubMed  Google Scholar 

  • Illgen RL 2nd, Bauer LM, Hotujec BT, Kolpin SE, Bakhtiar A, Forsythe TM (2009) Highly crosslinked vs conventional polyethylene particles: relative in vivo inflammatory response. J Arthroplasty 24:117–124

    Article  PubMed  Google Scholar 

  • Ingram JH, Stone M, Fisher J, Ingham E (2004) The influence of molecular weight, crosslinking and counterface roughness on TNF-alpha production by macrophages in response to ultra high molecular weight polyethylene particles. Biomaterials 25:3511–3522

    Article  PubMed  CAS  Google Scholar 

  • Jiranek WA, Machado M, Jasty M, Jevsevar D, Wolfe HJ, Goldring SR, Goldberg MJ, Harris WH (1993) Production of cytokines around loosened cemented acetabular components. J Bone Joint Surg Am 75:863–884

    PubMed  CAS  Google Scholar 

  • Kitamura N, Leung SB, Engh CA Sr (2005) Characteristics of pelvic osteolysis on computed tomography after total hip arthroplasty. Clin Orthop Relat Res 441:291–297

    Article  PubMed  Google Scholar 

  • Koseki H, Matsumoto T, Ito S, Doukawa H, Enomoto H, Shindo H (2005) Analysis of polyethylene particles isolated from periprosthetic tissue of loosened hip arthroplasty and comparison with radiographic appearance. J Orthop Sci 10:284–290

    Article  PubMed  CAS  Google Scholar 

  • Kurtz SM, Gawel HA, Patel JD (2011) History and systemic review of wear and osteolysis outcomes for first-generation highly crosslinked polyethylene. Clin Orthop Relat Res 469:2262–2277

    Article  PubMed  Google Scholar 

  • Lam J, Takeshita S, Barker JE, Kanagawa O, Ross FP, Teitelbaum SL (2000) TNF-α induces osteoclastogenesis by direct stimulation of macrophages exposed to permissive levels of RANK ligand. J Clin Invest 106:1481–1488

    Article  PubMed  CAS  Google Scholar 

  • Lee SE, Chung WJ, Kwak HB, Chung CH, Kwak KB, Lee ZH, Kim HH (2001) Tumor necrosis factor-α supports the survival of osteoclasts through the activation of Akt and ERK. J Biol Chem 276:49343–49490

    Article  PubMed  CAS  Google Scholar 

  • Leung S, Naudie D, Kitamura N, Walde T, Engh CA (2005) Computed tomography in the assessment of periacetabular osteolysis. J Bone Joint Surg Am 87:592–597

    Article  PubMed  Google Scholar 

  • Leung SB, Egawa H, Stepniewski A, Beykirch S, Engh CA Jr, Engh CA Sr (2007) Incidence and volume of pelvic osteolysis at early follow-up with highly cross-linked and noncross-linked polyethylene. J Arthroplasty 22:134–139

    Article  PubMed  Google Scholar 

  • Link TM, Berning W, Scherf S, Joosten U, Joist A, Engelke K, Daldrup-Link HE (2000) CT of metal implants: reduction of artefacts using an extended CT scale technique. J Comput Assist Tomogr 24:165–172

    Article  PubMed  CAS  Google Scholar 

  • Looney R, Boyd A, Totterman S, Seo G, Tamez-Pena J, Campbell D, Novotny L, Olcott C, Martell J, Hayes FA, O’Keefe RJ, Schwarz EM (2002) Volumetric computerized tomography as a measurement of peri-prosthetic acetabular osteolysis and its correlation with wear. Arthr Res 4:59–63

    Article  Google Scholar 

  • Mall NA, Nunley RM, Zhu JJ, Maloney WJ, Barrack RL, Clohisy JC (2011) The incidence of acetabular osteolysis in young patients with conventional versus highly crosslinked polyethylene. Clin Orthop Relat Res 469:372–381

    Article  PubMed  Google Scholar 

  • Maloney WJ, Herzwurm P, Paprosky W, Rubash HE, Engh C (1997) Treatment of pelvic osteolysis associated with a stable acetabular component inserted without cement as part of a total hip replacement. J Bone Joint Surg Am 79:1628–1634

    PubMed  CAS  Google Scholar 

  • McClung MR, Lewiecki EM, Geller ML, Bolognese MA, Peacock M, Weinstein RL, Ding B, Rockabrand E, Wagmar RB, Miller PD (2013) Effect of denosumab on bone mineral density and biochemical markers of bone turnover: 8-year results of a phase 2 clinical trial. Osteoporosis Int 24:227–235

    Article  CAS  Google Scholar 

  • McKellop H, Shen FW, Lu B, Campbell P, Salovey R (1999) Development of an extremely wear-resistant ultra high molecular weight polyethylene for total hip replacements. J Orthop Res 17:157–167

    Article  PubMed  CAS  Google Scholar 

  • McKellop H, Shen FW, Lu B, Campbell P, Salovey R (2000) Effect of sterilization method and other modifications on the wear resistance of acetabular cups made of ultra-high molecular weight polyethylene. J Bone Joint Surg Am 82:1708–1725

    PubMed  Google Scholar 

  • Millett PJ, Allen MJ, Bostrom MP (2002) Effects of alendronate on particle-induced osteolysis in a rat model. J Bone Joint Surg Am 84:236–249

    PubMed  Google Scholar 

  • Muratoglu OK, Bragdon CR, O’Connor DO, Jasty M, Harris WH (2001) A novel method of cross-linking ultra-high-molecular-weight polyethylene to improve wear, reduce oxidation, and retain mechanical properties. J Arthroplasty 16:149–160

    Article  PubMed  CAS  Google Scholar 

  • Nakagawa N, Yamaguchi K, Shima N, Yasuda H, Yano K, Morinaga T, Higashio K (1998) RANK is the essential signaling receptor for osteoclast differentiation factor in osteoclastogenesis. Biochem Biophys Res Commun 253:395–400

    Article  PubMed  CAS  Google Scholar 

  • Nakashima Y, Sun DH, Maloney WJ, Goodman SB, Schurman DJ, Smith RL (1998) Induction of matrix metalloproteinase expression in human macrophages by orthopaedic particulate debris in vitro. J Bone Joint Surg Br 80:694–700

    Article  PubMed  CAS  Google Scholar 

  • Naudie DDR, Engh CA Sr (2004) Surgical management of polyethylene wear and pelvic osteolysis with modular uncemented acetabular components. J Arthroplasty 19:124–129

    Article  PubMed  Google Scholar 

  • Neale SD, Sabokbar A, Howie DW, Murray DW, Athanasou NA (1999) Macrophage colony-stimulating factor and interleukin-6 release by periprosthetic cells stimulates osteoclast formation and bone resorption. J Orthop Res 17:686–694

    Article  PubMed  CAS  Google Scholar 

  • Neale SD, Haynes DR, Howie DW, Murray DW, Athanasou NA (2000) The effect of particle phagocytosis and metallic wear particles on osteoclast formation and bone resorption in vitro. J Arthroplasty 15:654–662

    Article  PubMed  CAS  Google Scholar 

  • Oral E, Muratoglu OK (2011) Vitamin E diffused, highly crosslinked UHMWPE: a review. Int Orthop 35:215–223

    Article  PubMed  Google Scholar 

  • Oral E, Christensen SD, Malhi AS, Wannomae KK, Muratoglu OK (2006) Wear resistance and mechanical properties of highly cross-linked, ultrahigh-molecular weight polyethylene doped with vitamin E. J Arthroplasty 21:580–591

    Article  PubMed  Google Scholar 

  • Puri L, Wixson R, Stern S, Kohli J, Hendrix R, Stulberg D (2002) Use of helical computed tomography for the assessment of acetabular osteolysis after total hip arthroplasty. J Bone Joint Surg Am 84:609–614

    PubMed  Google Scholar 

  • Ries MD, Pruitt L (2005) Effect of cross-linking on the microstructure and mechanical properties of ultra-high molecular weight polyethylene. Clin Orthop Relat Res 440:149–156

    Article  PubMed  Google Scholar 

  • Sabokbar A, Fujikawa Y, Neale S, Murray DW, Athanasou NA (1997) Human arthroplasty derived macrophages differentiate into osteoclastic bone resorbing cells. Ann Rheum Dis 56:414–420

    Article  PubMed  CAS  Google Scholar 

  • Saleh KJ, Celebrezze M, Kassim R, Dykes DC, Gioe TJ, Callaghan JJ, Salvati EA (2003) Functional outcome after revision hip arthroplasty. A metaanalysis. Clin Orthop Relat Res 416:254–264

    Article  PubMed  Google Scholar 

  • Schmalzried TP, Callaghan JJ (1999) Current concepts review. Wear in total hip and knee replacements. J Bone Joint Surg Am 81:115–136

    PubMed  CAS  Google Scholar 

  • Schwarz EM, Campbell D, Totterman S, Boyd A, O’Keefe RJ, Looney RJ (2003) Use of volumetric computerized tomography as a primary outcome measure to evaluate drug efficacy in the prevention of peri-prosthetic osteolysis: a 1-year clinical pilot of etanercept vs. placebo. J Orthop Res 21:1049–1055

    Article  PubMed  CAS  Google Scholar 

  • Stamenkov R, Howie D, Taylor J, Findlay D, McGee M, Kourlis G, Carbone A, Burwell M (2003) Measurement of bone defects adjacent to acetabular components of hip replacements. Clin Orthop Relat Res 412:117–124

    Article  PubMed  Google Scholar 

  • Stamenkov RB, Howie DW, Neale SD, McGee MA, Taylor DJ, Findlay DM (2010) Distribution of periacetabular osteolytic lesions varies according to component design. J Arthroplasty 25:913–919

    Article  PubMed  Google Scholar 

  • Stulberg SD, Wixson RL, Adams AD, Hendrix RW, Bernfield JB (2002) Monitoring pelvic osteolysis following total hip replacement surgery: an algorithm for surveillance. J Bone Joint Surg Am 84:116–122

    Article  PubMed  Google Scholar 

  • Talmo CT, Shanbhag A, Rubash HE (2006) Nonsurgical management of osteolysis. Challenges and opportunities. Clin Orthop Relat Res 453:254–264

    Article  PubMed  Google Scholar 

  • Thomas GER, Simpson DJ, Mehmood S, Taylor A, McLardy-Smith P, Gill HS, Murray DW, Glyn-Jones S (2011) The seven-year wear of highly cross-linked polyethylene in total hip arthroplasty. J Bone Joint Surg Am 93:716–722

    Article  PubMed  Google Scholar 

  • Tower SS, Currier JH, Currier BH, Lyford KA, van Citters DW, Mayor MB (2007) Rim cracking of the cross-linked longevity polyethylene acetabular liner after total hip arthroplasty. J Bone Joint Surg Am 89:2212–2217

    Article  PubMed  Google Scholar 

  • Ulrich-Vinther M (2007) Gene therapy methods in bone and joint disorders. Evaluation of the adeno-associated virus vector in experimental models of articular cartilage disorders, periprosthetic osteolysis and bone healing. Acta Orthop Suppl 78:1–64

    Article  PubMed  Google Scholar 

  • Vernon-Roberts B, Freeman MAR (1977) The tissue response to total joint replacement prostheses. In: The scientific basis of joint replacement. Pitman Medical, London, pp 86–129

  • Vincent C, Findlay DM, Welldon KJ, Wijenayaka AR, Zheng TS, Haynes DR, Fazzalari NL, Evdokiou A, Atkins GJ (2009) Pro-inflammatory cytokines TNF-related weak inducer of apoptosis (TWEAK) and TNFalpha induce the mitogen-activated protein kinase (MAPK)-dependent expression of sclerostin in human osteoblasts. J Bone Miner Res 24:1434–1449

    Article  PubMed  CAS  Google Scholar 

  • von Knoch F, Heckelei A, Wedemeyer C, Saxler G, Hilken G, Brankamp J, Sterner T, Landgraeber S, Henschke F, Loer F, von Knoch M (2005) Suppression of polyethylene particle-induced osteolysis by exogenous osteoprotegerin. J Biomed Mater Res A 75:288–294

    Google Scholar 

  • Walde TA, Weiland DE, Leung SB, Kitamura N, Sychterz CJ, Engh CA Jr, Claus AM, Potter HG, Engh CA Sr (2005) Comparison of CT, MRI, and radiographs in assessing pelvic osteolysis: a cadaveric study. Clin Orthop Relat Res 437:138–144

    Article  PubMed  Google Scholar 

  • Willert HG (1977) Reactions of the articular cartilage to wear products of artificial joint prostheses. J Biomed Mater Res 11:157–164

    Article  PubMed  CAS  Google Scholar 

  • Xu JW, Konttinen YT, Waris V, Patiala H, Sorsa T, Santavirta S (1997) Macrophage-colony stimulating factor (M-CSF) is increased in the synovial-like membrane of the prosthetic tissues in the aseptic loosening of total hip replacement (THR). Clin Rheumatol 16:244–248

    Article  Google Scholar 

  • Yasuda H, Shima N, Nakagawa N, Yamaguchi K, Kinosaki M, Mochizuki S-I, Tomoyasu A, Yano K, Goto M, Murakami A, Tsuda E, Moringa T, Higashio K, Udagawa N, Takahashi N, Suda T (1998) Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclast inhibitory factor and is identical to TRANCE/RANKL. Proc Natl Acad Sci USA 95:3597–3602

    Article  PubMed  CAS  Google Scholar 

  • Zhang L, Jia TH, Chong AC, Bai L, Yu H, Gong W, Wooley PH, Yang SY (2010) Cell-based osteoprotegerin therapy for debris-induced aseptic prosthetic loosening on a murine model. Gene Ther 17:1262–1269

    Article  PubMed  CAS  Google Scholar 

  • Zicat B, Engh CA, Gokcen E (1995) Patterns of osteolysis around total hip components inserted with and without cement. J Bone Joint Surg Am 77:432–439

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the profound influence of Professor Barrie Vernon-Roberts on the elucidation of the cause of periprosthetic osteolysis, and on their own research careers and research directions. His remarkable powers of observation, important mentoring activities and scientific insights, support and encouragement have directly and indirectly benefited us all greatly. We thank Dr. Roumen Stamenkov for his contributions to the work. We acknowledge the support of the Australian National Health and Medical Research Council (NHMRC), the Australian Orthopaedic Association Research Foundation, the Royal Adelaide Hospital, the University of Adelaide and the medical and nursing staff of the Royal Adelaide Hospital.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David M. Findlay.

Additional information

This paper was intended for inclusion in the Special Issue dedicated to the life and work of Professor Barrie Vernon-Roberts [Inflammopharmacology 2013;21(4):269 et seq.], but was inadvertently omitted.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Howie, D.W., Neale, S.D., Haynes, D.R. et al. Periprosthetic osteolysis after total hip replacement: molecular pathology and clinical management. Inflammopharmacol 21, 389–396 (2013). https://doi.org/10.1007/s10787-013-0192-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10787-013-0192-6

Keywords

Navigation