Skip to main content
Log in

An Analytic Approximation for Researching Tunneling Rate from Black Hole in Proca Field

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

The analytic solution of a static spherical symmetrical Proca black hole is discussed in this paper. As in the massive vector field, Proca black hole can be considered as the analogy of RN background plus a perturbation with the same order as μ 2 due to the mass of vector particle μ satisfying μ 2 ≪ 1. Through the action of Proca field, we find the analytic form with the first and arbitrary order approximation. Furthermore, we divide the results into 3 groups according to the real zero solutions of the background (i.e., spacetime in massless vector field). Finally we analyze the Hawking radiation of such black hole, which is significant for constructing black hole thermodynamic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hawking, S.W.: Nature 248, 30 (1974)

    Article  ADS  Google Scholar 

  2. Hawking, S.W.: Commun. Math. Phys. 43, 199 (1975)

    Article  ADS  MathSciNet  Google Scholar 

  3. Kraus, P., Wilczek, F.: Nucl. Phys. B 433, 403 (1995). arXiv:9408003 [gr-qc]

    Article  ADS  Google Scholar 

  4. Robinson, S.P., Wilczek, F.: Phys. Rev. Lett. 95, 011303 (2005). arXiv:0502074 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  5. Iso, S., Umetsu, H., Wilczek, F.: Phys. Rev. D 74, 044017 (2006). arXiv:0606018 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  6. Parikh, M.K., Wilczek, F.: Phys. Rev. Lett. 85, 5042 (2000). arXiv:9907001 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  7. Parikh, M.K.: Int. J. Mod. Phys. D 13, 2355 (2004). arXiv:0405160 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  8. Parikh, M.K.: The Tenth Marcel Grossmann Meeting. In: Proceedings of the MG10 Meeting held at Brazilian Center for Research in Physics (CBPF) (2006). arXiv:http://www.worldscientific.com/worldscibooks/10.1142/6033 [hep-th]

  9. Zhang, J.Y., Zhao, Z.: Phys. Lett. B 638, 110 (2006). arXiv:0512153 [gr-qc]

    Article  ADS  MATH  MathSciNet  Google Scholar 

  10. Srinivasan, K., Padmanabhan, T.: Phys. Rev. D 60, 24007 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  11. Akhmedov, E.T., Akhmedova, V., Singleton, D.: Phys. Lett. B 642, 124 (2006)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  12. Angheben, M., Nadalini, M., Vanzo, L., Zerbini, S.: J. High Energy Phys. 0505, 014 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  13. Shankaranarayanan, S., Padmanabhan, T., Srinivasan, K.: Class. Quant. Grav. 19, 2671 (2002)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  14. Cai, R.G., Cao, L.M., Hu, Y.P.: J. High Energy Phys. 0808, 090 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  15. Banerijee, R., Majhi, B.R.: J. High. Energy Phys. 0806, 095 (2008)

    Article  ADS  Google Scholar 

  16. Majhi, B.R.: Phys. Rev. D 79, 044005 (2009)

    Article  ADS  Google Scholar 

  17. Modak, S.K.: Phys. Lett. B 671, 167 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  18. Lin, K., Yang, S.Z.: Europhys. Lett. 82, 20006 (2009)

    Article  Google Scholar 

  19. Lin, K., Yang, S.Z.: Int. J. Theor. Phys. 48, 2920 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  20. Lin, K., Yang, S.Z.: Chin. Phys. B 20, 110403 (2011)

    Article  ADS  Google Scholar 

  21. Torii, T., Maeda, K.-I., Tachizawa, T.: Phys. Rev. D 51, 1510 (1995). arXiv:9406013 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  22. Torii, T., Maeda, K.: Phys. Rev. D 48, 1643 (1993)

    Article  ADS  Google Scholar 

  23. Galtsov, D.V., Volkov, M.S.: Phys. Lett. A 162, 144 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  24. Straumann, N., Zhou, Z.-H.: Phys. Lett. B 234, 33 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  25. Zhou, Z.-H., Straumann, N.: Nucl. Phys. B 234, 180 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  26. Bizon, P.: Phys. Lett. B 259, 53 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  27. Bizon, P., Wald, R.M.: Phys. Lett. B 259, 173 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  28. Heusler, M., Droz, S., Straumann, N.: Phys. Lett. B 271, 61 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  29. Bizon, P. Acta Phys. Polon B 25, 877 (1994). arXiv:9402016 [gr-qc]

  30. Gibbons, G.W., Maeda, K.: Nucl. Phys. B 298, 741 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  31. Garfinkle, D., Horowitz, G.T., Strominger, A.: Phys. Rev. D 43, 3140 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  32. Hawking, S.W.: Nature 248, 30 (1974)

    Article  ADS  Google Scholar 

  33. Hawking, S.W.: Commun. Math. Phys. 43, 199 (1975)

    Article  ADS  MathSciNet  Google Scholar 

  34. Damoar, T., Ruffini, R.: Phys. Rev. D 14, 332 (1976)

    Article  ADS  Google Scholar 

  35. Yang, S.Z., Lin, K., Li, J.: Hawking radiation of black hole in Einstein-Proca theory. Int. J. Theor. Phys. (2014) doi:10.1007/s10773-013-1968-6

  36. Lin, K., Yang, S.Z.: Chin. Phys. B 20, 110403 (2011)

    Article  ADS  Google Scholar 

  37. Tu, L.C., Shao, C.C., Luo, J.: Phys. Lett. A 352, 267 (2006)

    Article  ADS  MATH  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China No. 11205254, No. 11178018 and No. 11075224, and the Natural Science Foundation Project of CQ CSTC 2011BB0052, and the Fundamental Research Funds for the Central Universities CQDXWL-2013-010,CDJZR12160015 and CDJRC10300003.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuanhong Zhong.

Appendix

Appendix

In the appendix, for the case 1, case 2, case 3 mentioned in Section 2, we list the perturbation functions Ñ (r) and à 0 (r) with corresponding subscripts respectively. Here we only retain the coefficients of δ.

Case 1

\(1+\frac {Q^{2}}{r^{2}}-\frac {2M}{r}+\frac {r^{2}\Lambda }{3}=\frac {\Lambda }{3r^{2}}(r-r_{1})(r-r_{2})(r-r_{3})(r-r_{4})\):

$$\begin{array}{@{}rcl@{}} &{}\tilde{N}(r)&{}={}\frac{9 \mu^{2}Q^{2}}{\Lambda^{2}} \left\{\frac{\frac{{r_{1}^{3}}}{(r{}-{}r_{1}) (r_{1}{}-{}r_{3})^{2} (r_{1}{}-{}r_{3})^{2}}{}+{}\frac{{r_{2}^{3}}}{(r{}-{}r_{2}) (r_{2}{}-{}r_{3})^{2} (r_{2}{}-{}r_{4})^{2}}}{(r_{1}{}-{}r_{2})^{2}} {}+{}\frac{\frac{{r_{3}^{3}}}{(r{}-{}r_{3}) (r_{1}{}-{}r_{3})^{2} (r_{2}{}-{}r_{3})^{2}}{}+{}\frac{{r_{4}^{3}}}{(r{}-{}r_{4}) (r_{1}{}-{}r_{4})^{2} (r_{2}{}-{}r_{4})^{2}}}{(r_{3}{}-{}r_{4})^{2}} \right. \\ && \left. \frac{{r_{1}^{2}} \log (r-r_{1}) \left(3 {r_{1}^{3}}-{r_{1}^{2}} (r_{2}+r_{3}+r_{4})-r_{1} (r_{2} (r_{3}+r_{4})+r_{3} r_{4})+3 r_{2} r_{3} r_{4}\right)}{(r_{1}-r_{2})^{3} (r_{1}-r_{3})^{3} (r_{1}-r_{4})^{3}} \right. \\ && \left. +\frac{{r_{2}^{2}} \log (r-r_{2}) \left(r_{1} \left({r_{2}^{2}}+r_{2} (r_{3}+r_{4})-3 r_{3} r_{4}\right)+r_{2} \left(-3 {r_{2}^{2}}+r_{2} (r_{3}+r_{4})+r_{3} r_{4}\right)\right)}{(r_{1}-r_{2})^{3} (r_{2}-r_{3})^{3} (r_{2}-r_{4})^{3}} \right. \\ && \left. +\frac{{r_{3}^{2}} \log (r-r_{3}) (r_{1} (r_{2} (r_{3}-3 r_{4})+r_{3} (r_{3}+r_{4}))+r_{3} (r_{2} (r_{3}+r_{4})+r_{3} (r_{4}-3 r_{3})))}{(r_{1}-r_{3})^{3} (r_{3}-r_{2})^{3} (r_{3}-r_{4})^{3}} \right. \\ && \left. +\frac{{r_{4}^{2}} \log (r-r_{4}) (r_{1} (r_{2} (r_{4}-3 r_{3})+r_{4} (r_{3}+r_{4}))+r_{4} (r_{2} (r_{3}+r_{4})+r_{4} (r_{3}-3 r_{4})))}{(r_{1}-r_{4})^{3} (r_{4}-r_{2})^{3} (r_{4}-r_{3})^{3}}{\vphantom{\frac{\frac{{r_{1}^{3}}}{(r{}-{}r_{1}) (r_{1}{}-{}r_{3})^{2} (r_{1}{}-{}r_{3})^{2}}{}+{}\frac{{r_{2}^{3}}}{(r{}-{}r_{2}) (r_{2}{}-{}r_{3})^{2} (r_{2}{}-{}r_{4})^{2}}}{(r_{1}{}-{}r_{2})^{2}} {}+{}\frac{\frac{{r_{3}^{3}}}{(r{}-{}r_{3}) (r_{1}{}-{}r_{3})^{2} (r_{2}{}-{}r_{3})^{2}}{}+{}\frac{{r_{4}^{3}}}{(r{}-{}r_{4}) (r_{1}{}-{}r_{4})^{2} (r_{2}{}-{}r_{4})^{2}}}{(r_{3}{}-{}r_{4})^{2}}}}\right\}; \end{array}$$
(32)
$$\begin{array}{@{}rcl@{}} &\tilde{A}_{0}(r)&{}={} \frac{18 \mu^{2} Q^{3}}{\Lambda^{2} r^{2}} \left\{\frac{{r_{1}^{2}} \log (r-r_{1})}{(r_{1}-r_{2})^{3} (r_{1}-r_{3})^{3} (r_{1}-r_{4})^{3}} \left[Q^{2} \left(9 {r_{1}^{3}}-3 {r_{1}^{2}} (r_{2}+r_{3}+r_{4})-3 r_{1} (r_{2} (r_{3}+r_{4})+r_{3} r_{4}) \right. \right. \right. \\ && \left.\left.\left. +9 r_{2} r_{3} r_{4}{\vphantom{9 {r_{1}^{3}}-3 {r_{1}^{2}} (r_{2}+r_{3}+r_{4})-3 r_{1} (r_{2} (r_{3}+r_{4})+r_{3} r_{4}}}\right)+\Lambda r_{1} (r_{1}-r_{2})^{2} (r_{1}-r_{3})^{2} (r_{1}-r_{4})^{2}\right]-\frac{{r_{2}^{2}} \log (r-r_{2})}{(r_{1}-r_{2})^{3} (r_{2}-r_{3})^{3} (r_{2}-r_{4})^{3}}\left(\Lambda r_{2} (r_{1}-r_{2})^{2} \right. \right. \\ && \left.\left. (r_{2}-r_{3})^{2} (r_{2}-r_{4})^{2} -3 Q^{2} (r_{4} (r_{1} (r_{2}-3 r_{3})+r_{2} (r_{2}+r_{3}))+r_{2} (r_{1} (r_{2}+r_{3})+r_{2} (r_{3}-3 r_{2})))\right) \right. \\ && -\frac{{r_{3}^{2}} \log (r-r_{3})}{(r_{1}-r_{3})^{3} (r_{3}-r_{2})^{3} (r_{3}-r_{4})^{3}} \left(\Lambda r_{3} (r_{1}-r_{3})^{2} (r_{2}-r_{3})^{2} (r_{3}-r_{4})^{2}-3 Q^{2} \left(r_{1} \left(r_{2} (r_{3}-3 r_{4}) \right.\right.\right.\\ && \left.\left.\left. +r_{3} (r_{3}+r_{4})\right)+r_{3} (r_{2} (r_{3}+r_{4})+r_{3} (r_{4}-3 r_{3}))\right){\vphantom{9 {r_{1}^{3}}-3 {r_{1}^{2}} (r_{2}+r_{3}+r_{4})-3 r_{1} (r_{2} (r_{3}+r_{4})+r_{3} r_{4}}}\right) -\frac{{r_{4}^{2}} \log (r-r_{4})}{(r_{1}-r_{4})^{3} (r_{4}-r_{2})^{3} (r_{4}-r_{3})^{3}}\\ && \left(Q^{2} \left(-3 {r_{4}^{2}} (r_{1}+r_{2}+r_{3})-3 r_{4} (r_{1} (r_{2}+r_{3})+r_{2} r_{3})+9 r_{1} r_{2} r_{3}+9 {r_{4}^{3}}\right) \right.\\ && +\frac{\frac{{r_{1}^{3}}}{(r-r_{1}) (r_{1}-r_{3})^{2} (r_{1}-r_{3})^{2}} +\frac{{r_{2}^{3}}}{(r-r_{2}) (r_{2}-r_{3})^{2} (r_{2}-r_{4})^{2}}}{(r_{1}-r_{2})^{2}}\\ && +\frac{\frac{{r_{3}^{3}}}{(r-r_{3}) (r_{1}-r_{3})^{2} (r_{2}-r_{3})^{2}}+\frac{{r_{4}^{3}}}{(r-r_{4}) (r_{1}-r_{4})^{2}(r_{2}-r_{4})^{2}}}{(r_{3}-r_{4})^{2}}\\ && \left. \left. +\Lambda r_{4}(r_{1}-r_{4})^{2} (r_{2}-r_{4})^{2} (r_{3}-r_{4})^{2}\right){\vphantom{\frac{{r_{1}^{2}} \log (r-r_{1})}{(r_{1}-r_{2})^{3} (r_{1}-r_{3})^{3} (r_{1}-r_{4})^{3}}}}\right\}; \end{array}$$
(33)

Case 2

\(1+\frac {Q^{2}}{r^{2}}-\frac {2M}{r}+\frac {r^{2}\Lambda }{3}=\frac {\Lambda }{3r^{2}}(r-r_{1})(r-r_{2})(r^{2}+ar+b)\):

$$\begin{array}{@{}rcl@{}} &\tilde{N}(r)&=\frac{9 \mu^{2} Q^{2} }{\Lambda^{2}}\left\{-\frac{(b-r_{1} r_{2}) \log (r (a+r)+b)}{2 (r_{1} (a+r_{1})+b)^{3} (r_{2} (a+r_{2})+b)^{3}} \left[-b r_{1} r_{2} \left(3 a^{2}+10 a (r_{1}+r_{2})+3 {r_{1}^{2}}+7 r_{1} r_{2}+3 {r_{2}^{2}}\right) \right. \right. \\ && \left.\left. +{r_{1}^{2}} {r_{2}^{2}} \left(-3 a^{2}-a (r_{1}+r_{2})+r_{1} r_{2}\right)-b^{2} \left(a (r_{1}+r_{2})+3 {r_{1}^{2}}+7 r_{1} r_{2}+3 {r_{2}^{2}}\right)+b^{3}\right] \right. \\ && \left. +\frac{1}{(r_{1}-r_{2})^{2}}\left[\frac{{r_{1}^{3}}}{(r-r_{1}) (r_{1} (a+r_{1})+b)^{2}}+\frac{{r_{2}^{3}}}{(r-r_{2}) (r_{2} (a+r_{2})+b)^{2}}\right] \right. \\ && -\frac{1}{\left(a^{2}-4 b\right) (r (a+r)+b) (r_{1} (a+r_{1})+b)^{2} (r_{2} (a+r_{2})+b)^{2}}\left[a^{3} r {r_{1}^{2}} {r_{2}^{2}}+a^{2} b \left(b^{2}+r_{1} r_{2} \left(2 r(r_{1}+r_{2}) \right.\right. \right.\\ &&\left.\left. +r_{1} r_{2}\right)\right)+a b \left(b^{2} (r+2 (r_{1}+r_{2}))+b \left(r \left({r_{1}^{2}}+4 r_{1} r_{2}+{r_{2}^{2}}\right)+2 r_{1} r_{2} (r_{1}+r_{2})\right)-3 r {r_{1}^{2}} {r_{2}^{2}}\right)\\ &&\left. +2 b^{2} \left(-b^{2}+b\left(2 r (r_{1}+r_{2})+{r_{1}^{2}}+4 r_{1} r_{2}+{r_{2}^{2}}\right) -r_{1} r_{2} (2 r(r_{1}+r_{2})+r_{1} r_{2})\right)\right]\\[-2pt]&&-\frac{\tan^{-1}\left(\frac{a+2 r}{\sqrt{4 b-a^{2}}}\right)}{\left(4 b-a^{2}\right)^{3/2} (r_{1}(a+r_{1})+b)^{3} (r_{2} (a+r_{2})+b)^{3}} \left[3 a^{5} r_{1} r_{2} \left(b^{2}+{r_{1}^{2}} {r_{2}^{2}}\right)+a^{4} (r_{1}+r_{2}) (b+r_{1} r_{2})\right.\\ &&\times\left(b^{2}+8 b r_{1} r_{2}+{r_{1}^{2}} {r_{2}^{2}}\right)+a^{3} \left(-b^{4} +b^{3} (r_{1}-3 r_{2}) (3 r_{1}-r_{2})+18 b^{2} r_{1} r_{2} \left({r_{1}^{2}}+3 r_{1} r_{2}+{r_{2}^{2}}\right)\right.\\&&\left.+b {r_{1}^{2}} {r_{2}^{2}} (r_{1}-3 r_{2}) (3 r_{1}-r_{2})-{r_{1}^{4}} {r_{2}^{4}}\right) -6 a^{2} b \left(b-{r_{1}^{2}}\right)\left(b-{r_{2}^{2}}\right) (r_{1}+r_{2}) (b+r_{1} r_{2})\\ && +2 a b \left(3 b^{4} +12 b^{3} r_{1}r_{2}+b^{2} \left({r_{1}^{4}}-20 {r_{1}^{3}} r_{2}-72 {r_{1}^{2}} {r_{2}^{2}}-20 r_{1} {r_{2}^{3}}+{r_{2}^{4}}\right)+12 b {r_{1}^{3}} {r_{2}^{3}}+3 {r_{1}^{4}} {r_{2}^{4}}\right) \\ &&\left. +8 b^{2} (r_{1}+r_{2}) (b+r_{1} r_{2})\left(3 b^{2}-b \left({r_{1}^{2}}+8 r_{1} r_{2}+{r_{2}^{2}}\right)+3 {r_{1}^{2}} {r_{2}^{2}}\right)\right] \\ &&-\frac{{r_{1}^{2}} \log (r-r_{1}) (r_{1} (r_{2} (a-r_{1})+r_{1} (a+3 r_{1}))-b (r_{1}-3 r_{2}))}{(r_{1} (a+r_{1})+b)^{3}(r_{1}-r_{2})^{3}}\\ && \left. -\frac{{r_{2}^{2}} \log (r-r_{2}) (r_{2} (a (r_{1}+r_{2})+r_{2} (3 r_{2}-r_{1}))+b (3 r_{1}-r_{2}))}{(r_{2} (a+r_{2})+b)^{3}(r_{1}-r_{2})^{3}}\right\}; \end{array}$$
(34)
$$\begin{array}{@{}rcl@{}} &{}\tilde{A}_{0}(r)&=\frac{6 q^{3} \mu^{2} }{r^{2} \Lambda^{2}}\left\{\frac{{r_{2}^{2}} \left(-3 (b (3 r_{1}-r_{2})+r_{2} (a (r_{1}+r_{2})+r_{2} (3 r_{2}-r_{1}))) q^{2}-(r_{1}-r_{2})^{2} r_{2} (b+r_{2} (a+r_{2}))^{2} \Lambda \right)}{(r_{1}-r_{2})^{3} \left({r_{2}^{2}}+a r_{2}+b\right)^{3}}\right.\\[-4pt] &&\left. \log (r-r_{2}) +\frac{{r_{1}^{2}}\log (r-r_{1})}{\left({r_{1}^{2}}+a r_{1}+b\right)^{3} (r_{1}-r_{2})^{3}} \left(3 (r_{1} (r_{1} (3 r_{1}-r_{2})+a (r_{1}+r_{2}))-b (r_{1}-3 r_{2})) q^{2} \right. \right.\\[-4pt] && \left.\left. +r_{1} (b+r_{1} (a+r_{1}))^{2} (r_{1}-r_{2})^{2} \Lambda \right) +\frac{3}{(r_{1}-r_{2})^{2}} \left(\frac{{r_{1}^{3}}}{(r-r_{1}) (b+r_{1} (a+r_{1}))^{2}}+\frac{{r_{2}^{3}}}{(r-r_{2}) (b+r_{2} (a+r_{2}))^{2}}\right) \right. \\ && \left. -\frac{3}{\left(a^{2}-4 b\right) (b+r (a+r)) (b+r_{1} (a+r_{1}))^{2} (b+r_{2} (a+r_{2}))^{2}}\left(r {r_{1}^{2}} {r_{2}^{2}} a^{3}+b \left(b^{2}+r_{1} r_{2} (r_{1} r_{2}+2 r (r_{1}+r_{2}))\right) a^{2} \right.\right. \\[-2pt] && \left.\left. +b \left((r+2 (r_{1}+r_{2})) b^{2}+\left(2 r_{1} r_{2} (r_{1}+r_{2})+r \left({r_{1}^{2}}+4 r_{2} r_{1}+{r_{2}^{2}}\right)\right) b-3 r {r_{1}^{2}} {r_{2}^{2}}\right) a+2 b^{2} \left(-b^{2}+\left({r_{1}^{2}}+4 r_{2} r_{1} \right.\right.\right. \right.\\ && \left.\left.\left.\left. +{r_{2}^{2}} +2 r (r_{1}+r_{2})\right) b-r_{1} r_{2} (r_{1} r_{2}+2 r (r_{1}+r_{2}))\right)\right)+\frac{3 }{\left(4 b-a^{2}\right)^{3/2} (b+r_{1} (a+r_{1}))^{3} (b+r_{2} (a+r_{2}))^{3}} \right.\\ && \left. \left[3 r_{1} r_{2} \left(b^{2}+{r_{1}^{2}} {r_{2}^{2}}\right) a^{5}+(r_{1}+r_{2}) (b+r_{1} r_{2}) \left(b^{2}+8 r_{1} r_{2} b+{r_{1}^{2}} {r_{2}^{2}}\right) a^{4}+\left(-b^{4}+(r_{1}-3 r_{2}) (3 r_{1}-r_{2}) b^{3} \right.\right.\right. \\ && \left.\left.\left. +18 r_{1} r_{2} \left({r_{1}^{2}}+3 r_{2} r_{1}+{r_{2}^{2}}\right) b^{2} +{r_{1}^{2}} (r_{1}-3 r_{2}) (3 r_{1}-r_{2}) {r_{2}^{2}} b-{r_{1}^{4}} {r_{2}^{4}}\right) a^{3}-6 b \left(b-{r_{1}^{2}}\right) (r_{1}+r_{2}) \right.\right.\\ && \left.\left. (b+r_{1} r_{2}) \left(b-{r_{2}^{2}}\right) a^{2}+2 b \left(3 b^{4}+12 r_{1} r_{2} b^{3}+\left({r_{1}^{4}}-20 r_{2} {r_{1}^{3}}-72 {r_{2}^{2}} {r_{1}^{2}}-20 {r_{2}^{3}} r_{1}+{r_{2}^{4}}\right) b^{2} \right.\right.\right.\\ && \left.\left.\left. +12 {r_{1}^{3}} {r_{2}^{3}} b+3 {r_{1}^{4}} {r_{2}^{4}}\right) a+8 b^{2} (r_{1}+r_{2}) (b+r_{1} r_{2}) \left(3 b^{2}-\left({r_{1}^{2}}+8 r_{2} r_{1}+{r_{2}^{2}}\right) b+3 {r_{1}^{2}} {r_{2}^{2}}\right)\right] \right.\\ && \left. +\left(a^{2}-4 b\right) (b+r_{1} (a+r_{1}))^{2} (b+r_{2} (a+r_{2}))^{2} \left(r_{1} r_{2} a^{3}+b (r_{1}+r_{2}) a^{2}+b (b-3 r_{1} r_{2}) a \right.\right.\\[-2pt] && \left.\left. -2 b^{2} (r_{1}+r_{2})\right)\Lambda \tan^{-1}\left(\frac{a+2 r}{\sqrt{4 b-a^{2}}}\right)+\frac{1}{2 \left({r_{1}^{2}}+a r_{1}+b\right)^{3} \left({r_{2}^{2}}+a r_{2}+b\right)^{3}}\left(3 (b-r_{1} r_{2}) \right.\right.\\ && \left.\left. \left(b^{3}-\left(3 {r_{1}^{2}}+7 r_{2} r_{1}+3 {r_{2}^{2}}+a (r_{1}+r_{2})\right) b^{2}-r_{1} r_{2} \left(3 a^{2}+10 (r_{1}+r_{2}) a+3 {r_{1}^{2}}+3 {r_{2}^{2}}+7 r_{1} r_{2}\right)\right.\right.\right.\\ && \left.\left. b+{r_{1}^{2}} {r_{2}^{2}} \left(-3 a^{2}-(r_{1}+r_{2}) a+r_{1} r_{2}\right)\right) +(b+r_{1} (a+r_{1}))^{2}(b+r_{2} (a+r_{2}))^{2} \right.\\ && \left.\left. \left(r_{1} r_{2} a^{2}+b^{2}+b (a (r_{1}+r_{2})-r_{1} r_{2})\right) \Lambda \right) \log {\vphantom{\left\{\frac{{r_{2}^{2}} \left(-3 (b (3 r_{1}-r_{2})+r_{2} (a (r_{1}+r_{2})+r_{2} (3 r_{2}-r_{1}))) q^{2}-(r_{1}-r_{2})^{2} r_{2} (b+r_{2} (a+r_{2}))^{2} \Lambda \right)}{(r_{1}-r_{2})^{3} \left({r_{2}^{2}}+a r_{2}+b\right)^{3}}\right.}}\left(r^{2}+a r+b\right)\right\} \end{array}$$
(35)

Case 3

\(1+\frac {Q^{2}}{r^{2}}-\frac {2M}{r}+\frac {r^{2}\Lambda }{3}=\frac {\Lambda }{3r^{2}}(r^{2}+ar+b)(r^{2}+cr+d)\):

$$\begin{array}{@{}rcl@{}} &{}\tilde{N}(r)&=-\frac{9 q^{2} \mu^{2} }{\Lambda^{2}}\left\{\frac{1}{\left(b^{2}+\left(c^{2}-a c-2 d\right) b+d \left(a^{2}-c a+d\right)\right)^{2}}\left(\frac{1}{\left(a^{2}-4 b\right) (b+r (a+r))}\right. \right.\\[-3pt] && \left.\left.\left. \times\left(d^{2} r a^{3} +b \left(b^{2} +d(d-2 c r)\right) a^{2}+b \left(\left(-3d^{2}+2 b d+b \left(c^{2}+b\right)\right) r-2 b c (b+d)\right) \right. \right. \right.\right.\\[-6pt]&&\left. \times a-2 b^{2} \left(b^{2}-\left(c^{2}-2 r c+2 d\right) b+d (d-2 c r)\right)\right)+\frac{1}{\left(c^{2}-4 d\right) (d+r (c+r))}\left(\left(c^{2}-2 d\right) d+c\right.\\ &&\left.\times\left(c^{2}-3 d\right) r\right) b^{2}+2 d \left(d (2 d+c r) -a\left(r c^{2}+d c-2 d r\right)\right) b+d^{2} \left((2 d+c r) a^{2}-2 d (c+2 r) a\right.\\[-6pt]&&\left.\left.+d (c (c+r)-2 d)\right){\vphantom{\left(c^{2}-3 d\right)}}\right) -\frac{1}{\left(b^{2}+\left(c^{2}-a c-2 d\right) b+d \left(a^{2}-c a+d\right)\right)^{3}}-\frac{1}{\left(4 b-a^{2}\right)^{3/2}}\\[-4pt]&& \times\left(-3 d \left(b^{2}+d^{2}\right) a^{5}+c (b+d) \left(b^{2}+8 d b+d^{2}\right) a^{4}+\left(b^{4}+ \left(16 d-3 c^{2}\right) b^{3}-18 d \left(c^{2}+d\right) b^{2}\right.\right. \\ &&\left.+d^{2} \left(16 d-3 c^{2}\right) b+d^{4}\right) a^{3}-6 b c (b+d) \left(b^{2}-c^{2} b+2 d b+d^{2}\right) a^{2}-2 b \left(3 b^{4}+12 d b^{3}\right.\\ &&\left.+\left(c^{4}-24 d c^{2}-30 d^{2}\right) b^{2}+12 d^{3} b+3 d^{4}\right) a+8 b^{2} c (b+d) \left(3 b^{2}-\left(c^{2}+6 d\right) b\right.\\[-4pt]&&\left.\left.+3 d^{2}\right)\right) \tan ^{-1}\left(\frac{a+2 r}{\sqrt{4 b-a^{2}}}\right)-\frac{1}{\left(4 d-c^{2}\right)^{3/2}}\left(-6 (c-4 a) d^{5}+\left(-8 a^{3}-6 \left(c^{2}+4 b\right) a \right.\right.\\[-4pt]&& \left. +c^{3}-24 b c\right) d^{4}+\left(a c^{4}+\left(16 b-3 a^{2}\right) c^{3}+6 a \left(a^{2}-3 b\right) c^{2}-2 \left(a^{4}-24 b a^{2}-30 b^{2}\right) c\right.\\&& \left.-8 a b \left(a^{2}+3 b\right)\right) d^{3}-3 b \left(c^{5}-3 a c^{4}+6 \left(a^{2}+b\right) c^{3}-2 a \left(a^{2}-3 b\right) c^{2}+8 b^{2} c-8 a b^{2}\right)d^{2} \\[-4pt] && +b^{2} c \left(-6 b^{2}+2 c (8 c-3 a) b\left.\left.-3 a (a-3 c) c^{2}\right) d+b^{3} c^{3} (b+(a-3 c) c)\right) \tan^{-1}\left(\frac{c+2 r}{\sqrt{4 d-c^{2}}}\right) \right.\\&& -\frac{(b-d)}{2 \left(b^{2}+\left(c^{2}-a c-2 d\right) b+d \left(a^{2}-c a+d\right)\right)^{3}}\left(b^{3}+((a-3 c) c-d) b^{2}-d ((a-3 c) (3a-c)+d) b\right.\\[-4pt] && \left.\left.+d^{2} (a (c-3 a)+d)\right) (\log (b+r (a+r))-{\vphantom{\left\{\frac{1}{\left(b^{2}+\left(c^{2}-a c-2 d\right) b+d \left(a^{2}-c a+d\right)\right)^{2}}\left(\frac{1}{\left(a^{2}-4 b\right) (b+r (a+r))}\right. \right.}}\log (d+r (c+r))\left.{\vphantom{\frac{1}{\left(a^{2}-4 b\right) (b+r (a+r))}}}\right)\right\}; \end{array}$$
(36)
$$\begin{array}{@{}rcl@{}} &\tilde{A}_{0}(r)&=\frac{6 q^{3} \mu^{2} }{r^{2} \Lambda^{2}}\left\{\frac{3 }{\left(b^{2}+\left(c^{2}-a c-2 d\right) b+d \left(a^{2}-c a+d\right)\right)^{2}}\left(\frac{1}{\left(a^{2}-4 b\right) (b+r (a+r))}\left(-d^{2} r a^{3}-b \right.\right.\right.\\ && \left.\left.\left.\left. \times\left(b^{2}+d (d-2 c r)\right) a^{2}+b \left(2 b c (b+d)-\left(-3 d^{2}+2 b d+b \left(c^{2}+b\right)\right) r\right) a+2 b^{2} \left(b^{2}-\left(c^{2}-2 r c+2 d\right) b \right. \right. \right. \right.\right.\\ && \left.\left.\left.\left. +d (d-2 c r)\right)\right)-\frac{1}{\left(c^{2}-4 d\right) (d+r (c+r))}\left(\left(c^{2}-2 d\right) d+c \left(c^{2}-3 d\right) r\right) b^{2}+2 d \left(d (2 d+c r) \right. \right. \right.\\ && \left.\left.\left. -a \left(r c^{2}+d c-2 d r\right)\right) b+d^{2} \left((2 d+c r) a^{2}-2 d (c+2 r) a+d (c (c+r)-2 d)\right)\right) \right. \\ &&\left. +\frac{\left(4 b-a^{2}\right)^{3/2}}{\left(b^{2}+\left(c^{2}-a c-2 d\right) b+d \left(a^{2}-ca+d\right)\right)^{3}}\left(\left(a^{2}-4 b\right) \left(d a^{3}-b c a^{2}+b (b-3 d) a+2 b^{2}c\right) \Lambda \right.\right. \\ &&\left.\left.\left. \times\left(b^{2}+\left(c^{2}-a c-2 d\right) b+d \left(a^{2}-c a+d\right)\right)^{2}+3 \left(3 d \left(b^{2}+d^{2}\right) a^{5}-c (b+d) \left(b^{2}+8 d b+d^{2}\right) a^{4} \right. \right.\right.\right. \\ &&\left.\left.\left. -\left(b^{4}+\left(16 d-3 c^{2}\right) b^{3}-18 d \left(c^{2}+d\right) b^{2}+d^{2} \left(16 d-3 c^{2}\right) b+d^{4}\right) a^{3}+6 b c (b+d) \left(b^{2}-c^{2} b \right.\right.\right.\right. \\ &&\left.\left.\left.\left. +2 d b+d^{2}\right) a^{2}+2 b \left(3 b^{4}+12 d b^{3}+\left(c^{4}-24 d c^{2}-30 d^{2}\right) b^{2}+12 d^{3} b+3 d^{4}\right) a-8 b^{2} c (b+d) \right.\right.\right. \\ &&\left.\left.\left. \times\left(3 b^{2}-\left(c^{2}+6 d\right) b+3 d^{2}\right)\right) \right) \tan^{-1}\left(\frac{a+2 r}{\sqrt{4 b-a^{2}}}\right)+\frac{1}{\left(4 d-c^{2}\right)^{3/2}}\left(\left(c^{2}-4 d\right)\left(b c^{3}-(3 b+a c) d c \right.\right.\right.\\ &&\left.\left.\left. +(2a+c) d^{2}\right) \Lambda \left(b^{2}+\left(c^{2}-a c-2 d\right) b+d \left(a^{2}-c a+d\right)\right)^{2}+3 \left(6 (c-4 a) d^{5}+\left(8 a^{3}+6 \left(c^{2}+4 b\right) a \right.\right.\right.\right.\\ &&\left.\left.\left.\left. -c^{3}+24 b c\right) d^{4}+\left(-a c^{4}+\left(3 a^{2}-16 b\right) c^{3}-6 a \left(a^{2}-3 b\right) c^{2}+2 \left(a^{4}-24 b a^{2}-30 b^{2}\right) c \right.\right.\right.\right.\\ &&\left.\left.\left.\left. +8 a b \left(a^{2}+3 b\right)\right) d^{3}+3 b \left(c^{5}-3 a c^{4}+6 \left(a^{2}+b\right) c^{3}-2 a \left(a^{2}-3 b\right) c^{2}+8 b^{2} c-8 a b^{2}\right) d^{2} \right.\right.\right.\\ &&\left.\left.\left. +b^{2} c \left(6 b^{2}+2 (3 a-8 c) c b+3 a (a-3 c) c^{2}\right) d-b^{3} c^{3} (b+(a-3 c) c)\right) \right) \tan ^{-1}\left(\frac{c+2 r}{\sqrt{4 d-c^{2}}}\right) \right. \\ && \left. +\frac{1}{2 \left(b^{2}+\left(c^{2}-a c-2 d\right) b+d \left(a^{2}-c a+d\right)\right)^{3}}\left(\left(d a^{2}+b^{2}-b (a c+d)\right) \Lambda \left(b^{2}+\left(c^{2}-a c-2 d\right) b \right.\right.\right.\\ && \left.+d \left(a^{2}-c a+d\right)\right)^{2}+3 (b-d) \left(b^{3}+((a-3 c) c-d) b^{2}-d ((a-3 c) (3 a-c)+d) b\right.\\&&\left.\left.+d^{2} (a (c-3 a)+d)\right)\right) \log (b+r (a+r))+\left(\left(b c^{2}+d^{2}-(b+a c) d\right)\left(b^{2}+\left(c^{2}-a c-2 d\right) b\right.\right.\\&&\left.+d \left(a^{2}-c a+d\right)\right)^{2} \Lambda-3 (b-d) \left(b^{3}+((a-3 c)c-d) b^{2}-d ((a-3 c) (3 a-c)+d) b\right.\\&&\left.\left.\left.+d^{2} (a (c-3 a)+d)\right) \right){\vphantom{\left\{\frac{3 }{\left(b^{2}+\left(c^{2}-a c-2 d\right) b+d \left(a^{2}-c a+d\right)\right)^{2}}\left(\frac{1}{\left(a^{2}-4 b\right) (b+r (a+r))}\left(-d^{2} r a^{3}-b \left(b^{2} \right. \right. \right.\right.}}\log \left(d+cr+r^{2}\right)\right\}. \end{array}$$
(37)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhong, Y., Li, J. & Lin, K. An Analytic Approximation for Researching Tunneling Rate from Black Hole in Proca Field. Int J Theor Phys 53, 3035–3045 (2014). https://doi.org/10.1007/s10773-014-2099-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-014-2099-4

Keywords

Navigation