Skip to main content
Log in

Quantum Authenticated Direct Communication Using Bell States

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Two protocols of quantum direct communication with authentication [Phys. Rev. A 73:042305, 2006] were recently proposed by Lee, Lim and Yang, based on the correlation of Greenberger-Horne-Zeilinger (GHZ) states. However, Zhang et al. showed that in the two protocols the authenticator Trent can eavesdrop the secret message by subtle strategies [Phys. Rev. A 75:026301, 2007]. In this paper, we propose two authenticated quantum direct communication (AQDC) protocols using Bell states. Users can identify each other by checking the correlation of Bell states. Alice can directly send a secret message to Bob without any previously shared secret using the remaining Bell states after authentication. The two proposed AQDC protocols are implemented under the condition that there is a quantum link between Alice and Bob and that there is no quantum link between Alice and Bob respectively, similar to the ones proposed by Lee, Lim and Yang [Phys. Rev. A 73:042305, 2006]. The proposed AQDC protocols not only fix the leaks in the AQDC protocols proposed by Lee, Lim and Yang, but also economize the quantum resource.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Bennett, C.H., Brassard, G.: Quantum cryptography: public-key distribution and coin tossing. In: Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing, pp. 175–179. IEEE Press, New York (1984)

    Google Scholar 

  2. Ekert, A.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661–664 (1991)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. Bennett, C.H.: Quantum cryptography using any two nonorthogonal states. Phys. Rev. Lett. 68, 3121–3124 (1992)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. Boström, K., Felbinger, T.: Deterministic secure direct communication using entanglement. Phys. Rev. Lett. 89, 187902 (2002)

    Article  ADS  Google Scholar 

  5. Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block. Phys. Rev. A 68, 042317 (2003)

    Article  ADS  Google Scholar 

  6. Lin, S., Wen, Q.Y., Gao, F., Zhu, F.C.: Quantum secure direct communication with chi-type entangled states. Phys. Rev. A 78, 064304 (2008)

    Article  ADS  Google Scholar 

  7. Yang, Y.-G., Wen, Q.-Y.: Threshold quantum secure direct communication without entanglement. Sci. China Ser. G, Phys. Astron. 51(2), 176–183 (2008)

    Article  ADS  MATH  Google Scholar 

  8. Chen, X.B., Wang, T.Y., Du, J.Z., Wen, Q.Y., Zhu, F.C.: Controlled quantum secure direct communication with quantum encryption. Int. J. Quantum Inf. 6(3), 543–551 (2008)

    Article  MATH  Google Scholar 

  9. Cao, W.-F., Yang, Y.-G., Wen, Q.-Y.: Quantum secure direct communication with cluster states. Sci. China Ser. G, Phys. Astron. 53(7), 1271–1275 (2010)

    Article  ADS  Google Scholar 

  10. Hillery, M., Bužek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59, 1829–1834 (1999)

    Article  MathSciNet  ADS  Google Scholar 

  11. Karlsson, A., Koashi, M., Imoto, N.: Quantum entanglement for secret sharing and secret splitting. Phys. Rev. A 59, 162–168 (1999)

    Article  ADS  Google Scholar 

  12. Guo, G.P., Guo, G.C.: Quantum secret sharing without entanglement. Phys. Lett. A 310, 247–251 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. Zhang, Z.J., Man, Z.X.: Multiparty quantum secret sharing of classical messages based on entanglement swapping. Phys. Rev. A 72, 022303 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  14. Lin, S., Wen, Q.Y., Qin, S.J., et al.: Multiparty quantum secret sharing with collective eavesdropping-check. Opt. Commun. 282, 4455–4459 (2009)

    Article  ADS  Google Scholar 

  15. Wang, T.Y., Wen, Q.Y., Gao, F., Lin, S., Zhu, F.C.: Cryptanalysis and improvement of multiparty quantum secret sharing schemes. Phys. Lett. A 373, 65–68 (2008)

    Article  ADS  MATH  Google Scholar 

  16. Yang, Y.-G., Jia, X., Wang, H.Y., Zhang, H.: Verifiable quantum (k,n)-threshold secret sharing. Quantum Inf. Process. (2012). doi:10.1007/s11128-011-0323-1

    Google Scholar 

  17. Yang, Y.-G., Wang, Y., Chai, H.-P., Teng, Y.-W., Zhang, H.: Member expansion in quantum (t,n) threshold secret sharing schemes. Opt. Commun. 284(13), 3479–3482 (2011)

    Article  ADS  Google Scholar 

  18. Yang, Y.-G., Wang, Y., Teng, Y.-W., Wen, Q.-Y.: Universal three-party quantum secret sharing against collective noise. Commun. Theor. Phys. 55(4), 589–593 (2011)

    Article  ADS  Google Scholar 

  19. Yang, Y.-G., Chai, H.-P., Wang, Y., Teng, Y.-W., Wen, Q.-Y.: Fault tolerant quantum secret sharing against collective-amplitude-damping noise. Sci. China Ser. G, Phys. Astron. 54(9), 1619–1624 (2011)

    Article  ADS  Google Scholar 

  20. Yang, Y.-G., Teng, Y.-W., Chai, H.-P., Wen, Q.-Y.: Verifiable quantum (k,n)-threshold secret key sharing. Int. J. Theor. Phys. 50(3), 792–798 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  21. Yang, Y.-G., Teng, Y.-W., Chai, H.-P., Wen, Q.-Y.: Fault tolerant quantum secret sharing against collective noise. Phys. Scr. 83(2), 025003 (2011)

    Article  ADS  Google Scholar 

  22. Yang, Y.-G., Wen, Q.-Y.: Comment on: “Efficient high-capacity quantum secret sharing with two-photon entanglement” [Phys. Lett. A 372, 1957 (2008)]. Phys. Lett. A 373(3), 396–398 (2009)

    Article  ADS  MATH  Google Scholar 

  23. Yang, Y.-G., Wen, Q.-Y.: Threshold multiparty quantum-information splitting via quantum channel encryption. Int. J. Quantum Inf. 7(6), 1249–1254 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  24. Chen, X.B., Niu, X.X., Zhou, X.J., Yang, Y.X.: Multi-party quantum secret sharing with the single-particle quantum state to encode the information. Quantum Inf. Process. (2012). doi:10.1007/s11128-012-0379-6

  25. Lin, S., Wen, Q.Y., Gao, F., Qin, S.J., et al.: Improving the security of multiparty quantum secret sharing based on the improved Bostrom-Felbinger protocol. Opt. Commun. 281, 4553–4554 (2008)

    Article  ADS  Google Scholar 

  26. Qin, S.J., Gao, F., Wen, Q.Y., Zhu, F.C.: A special attack on the multiparty quantum secret sharing of secure direct communication using single photons. Opt. Commun. 281, 5472–5474 (2008)

    Article  ADS  Google Scholar 

  27. Sun, Y., Wen, Q.Y., Gao, F.: Multiparty quantum secret sharing based on Bell measurement. Opt. Commun. 282, 3647–3651 (2009)

    Article  ADS  Google Scholar 

  28. Dušek, M., Haderka, O., Hendrych, M., et al.: Quantum identification system. Phys. Rev. A 60, 149–156 (1999)

    Article  ADS  Google Scholar 

  29. Curty, M., Santos, D.J.: Quantum authentication of classical messages. Phys. Rev. A 64, 062309 (2001)

    Article  ADS  Google Scholar 

  30. Ljunggren, D., Bourennane, M., Karlsson, A.: Authority-based user authentication in quantum key distribution. Phys. Rev. A 62, 022305 (2000)

    Article  ADS  Google Scholar 

  31. Zhang, Z.S., Zeng, G.H., Zhou, N.R., Xiong, J.: Quantum identity authentication based on ping-pong technique for photons. Phys. Lett. A 356, 199–205 (2006)

    Article  ADS  MATH  Google Scholar 

  32. Yang, Y.-G., Wen, Q.-Y.: Economical multiparty simultaneous quantum identity authentication based on Greenberger–Horne–Zeilinger states. Chin. Phys. B 18(8), 3233–3236 (2009)

    ADS  Google Scholar 

  33. Yang, Y.-G., Wen, Q.-Y.: Multiparty simultaneous quantum identity authentication with secret sharing. Sci. China Ser. G, Phys. Astron. 51(3), 321–327 (2008)

    Article  ADS  MATH  Google Scholar 

  34. Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  35. Chen, X.B., Xu, G., Yang, Y.X., Wen, Q.Y.: Centrally controlled quantum teleportation. Opt. Commun. 283(23), 4802–4809 (2010)

    Article  ADS  Google Scholar 

  36. Yang, Y.G., Wen, Q.Y.: An efficient two-party quantum private comparison protocol with decoy photons and two-photon entanglement. J. Phys. A, Math. Theor. 42(5), 055305 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  37. Yang, Y.G., Cao, W.F., Wen, Q.Y.: Secure quantum private comparison. Phys. Scr. 80(6), 065002 (2009)

    Article  ADS  Google Scholar 

  38. Chen, X.B., Xu, G., Niu, X.X., Wen, Q.Y., Yang, Y.X.: An efficient protocol for the private comparison of equal information based on the triplet entangled state and single particle measurement. Opt. Commun. 283(7), 1561–1565 (2010)

    Article  ADS  Google Scholar 

  39. Yang, Y.G., Xia, J., Jia, X., Zhang, H.: Comment on quantum private comparison protocols with a semi-honest third party. Quantum Inf. Process. (2012). doi:10.1007/s11128-012-0433-4

  40. Lee, H., Lim, J., Yang, H.: Quantum direct communication with authentication. Phys. Rev. A 73, 042305 (2006)

    Article  ADS  Google Scholar 

  41. Zhang, Z.-J., Liu, J., Wang, D., Shi, S.-H.: Comment on “Quantum direct communication with authentication”. Phys. Rev. A 75, 026301 (2007)

    Article  ADS  Google Scholar 

  42. Stinespring, W.F.: Proc. Am. Math. Soc. 6, 211 (1955)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant Nos. 61170270, 61003290); The Specialized Research Fund for the Doctoral Program of Higher Education (Grant Nos. 20091103120014, 20090005110010); Beijing Natural Science Foundation (Grant Nos. 4122008, 1102004); the ISN open Foundation; Graduate Science and Technology Innovation Foundation (Nos. ykj-2012-7071, ykj-2012-7070) in Beijing University of Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Guang Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, YG., Tian, J., Xia, J. et al. Quantum Authenticated Direct Communication Using Bell States. Int J Theor Phys 52, 336–344 (2013). https://doi.org/10.1007/s10773-012-1347-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-012-1347-8

Keywords

Navigation