Skip to main content

Advertisement

Log in

Computer Modeling for Microwave Ablation in Breast Cancer Using a Coaxial Slot Antenna

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

The use of breast cancer mammography screening has allowed detection of a greater number of small carcinomas, and this has facilitated treatment by minimally invasive techniques. Microwave energy is a promising alternative treatment because it can preferentially heat and damage high-water-content breast carcinomas. In order to evaluate the feasibility of using this technique to treat breast cancer, a coaxial slot antenna computer simulation based on an axisymmetric finite element method (FEM) model was used to compare heating differences between cancer and normal breast tissue. Three FEM computer models were developed: in one of them, the coaxial slot antenna was immersed only in homogeneous breast tissue; for the second one, the antenna was immersed only in cancer tissue; for the third one, the antenna was inserted into malignant tissue surrounded by breast tissue. According to the results, the computer modeling demonstrated that the difference in dielectric properties and thermal parameters between malignant and normal adipose-dominated tissue was able to cause preferential heating of tumors during microwave ablation. Furthermore, the ablation zone radius was 42 % larger in the tumor than in low-water-content adipose tissue. Even though this technique requires further research, it is a promising minimally invasive modality for the local treatment of breast cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. P. Boyle, B. Levin, World Cancer Report 2008 (IARC Press, Lyon, 2008)

    Google Scholar 

  2. G. Shafirstein, P. Novák, E.G. Moros, E. Siegel, L. Hennings, Y. Kaufmann, S. Ferguson, J. Myhill, M. Swaney, P. Spring, Int. J. Hyperther. 23, 477 (2007)

    Article  Google Scholar 

  3. V. Ekstrand, H. Wiksell, I. Schultz, B. Sandstedt, S. Rotstein, A. Eriksson, Biomed. Eng. Online 4, 41 (2005)

    Article  Google Scholar 

  4. R.A. Gardner, H.I. Vargas, J.B. Block, C.L. Vogel, A.J. Fenn, G.V. Kuehl, M. Doval, Ann. Surg. Oncol. 9, 326 (2002)

    Article  Google Scholar 

  5. S. van Esser, M.A. van den Bosch, P.J. van Diest, W.T. Mali, I.H. Borel Rinkes, R. van Hillegersberg, World J. Surg. 31, 2284 (2007)

    Article  Google Scholar 

  6. D. Haemmerich, F.T. Lee Jr, Int. J. Hyperth. 21, 93 (2005)

    Article  Google Scholar 

  7. A.P. O’Rourke, D. Haemmerich, P. Prakash, M.C. Converse, D.M. Mahvi, J.G. Webster, Expert Rev. Med. Devices 4, 523 (2007)

    Article  Google Scholar 

  8. W.T. Joines, Y. Zhang, C. Li, R.L. Jirtle, Med. Phys. 21, 547 (1994)

    Article  Google Scholar 

  9. A.M. Campbell, D.V. Land, Phys. Med. Biol. 37, 193 (1992)

    Article  Google Scholar 

  10. M. Lazebnik, D. Popovic, L. McCartney, C. Watkins, M. Lindstrom, J. Harter, S. Sewall, T. Ogilvie, A. Magliocco, T. Breslin, W. Temple, D. Mew, J. Booske, M. Okoniewski, S. Hagness, Phys. Med. Biol. 52, 2637 (2007)

    Article  Google Scholar 

  11. K. Ohmoto, I. Miyake, M. Tsuduki, N. Shibata, M. Takesue, T. Kunieda, S. Ohno, M. Kuboki, S. Yamamoto, Hepatogastroenterology 46, 2894 (1999)

    Google Scholar 

  12. K. Ido, N. Isoda, K. Sugano, J. Gastroenterol. 36, 145 (2001)

    Article  Google Scholar 

  13. M.D. Lu, J.W. Chen, X.Y. Xie, L. Liu, X.Q. Huang, L.J. Liang, J.F. Huang, Radiology 221, 167 (2001)

    Article  Google Scholar 

  14. B. Dong, P. Liang, X. Yu, L. Su, D. Yu, Z. Cheng, J. Zhang, A.J.R. Am, J. Roentgenol. 180, 1547 (2003)

    Article  Google Scholar 

  15. D. Haemmerich, L. Chachati, A.S. Wright, D.M. Mahvi, F.T. Lee Jr, J.G. Webster, IEEE Trans. Biomed. Eng. 50, 493 (2003)

    Article  Google Scholar 

  16. J.M. Bertram, D. Yang, M.C. Converse, J.G. Webster, D.M. Mahvi, Biomed. Eng. Online 5, 15 (2006)

    Article  Google Scholar 

  17. H. Medina-Franco, S. Soto-Germes, J.L. Ulloa-Gómez, C. Romero-Trejo, N. Uribe, C.A. Ramirez-Alvarado, C. Robles-Vidal, Ann. Surg. Oncol. 15, 1689 (2008)

    Article  Google Scholar 

  18. T. Kinoshita, E. Iwamoto, H. Tsuda, K. Seki, Breast Cancer 18, 10 (2011)

    Article  Google Scholar 

  19. M.F. Iskander, A.M. Tumeh, IEEE Trans. Biomed. Eng. 36, 238 (1989)

    Article  Google Scholar 

  20. H.M. Chiu, A.S. Mohan, A.R. Weily, D.J.R. Guy, D.L. Ross, IEEE Trans. Biomed. Eng. 50, 890 (2003)

    Article  Google Scholar 

  21. W. Hurter, F. Reinbold, W.J. Lorenz, IEEE Trans. Microw. Theory. Tech. 39, 1048 (1991)

    Article  ADS  Google Scholar 

  22. K. Saito, S. Hosaka, S.-Y. Okabe, H. Yoshimura, K. Ito, Electron. Commun. Jpn. 86, 16 (2003)

    Article  Google Scholar 

  23. J.C. Lin, Y.-J. Wang, IEEE Trans. Biomed. Eng. 43, 657 (1996)

    Article  Google Scholar 

  24. S.A. Shock, K. Meredith, T.F. Warner, L.A. Sampson, A.S. Wright, T.C. Winter III, D.M. Mahvi, J.P. Fine, F.R. Lee Jr, Radiology 231, 143 (2004)

    Article  Google Scholar 

  25. G. Schaller, J. Erb, R. Engelbrecht, IEEE. Trans. Microw. Theory Tech. 44, 887 (1996)

    Article  ADS  Google Scholar 

  26. I. Longo, G.B. Gentili, M. Cerretelli, N. Tosoratti, IEEE Trans. Biomed. Eng. 50, 82 (2003)

    Article  Google Scholar 

  27. J.M. Bertram, D. Yang, M.C. Converse, J.G. Webster, D.M. Mahvi, Crit. Rev. Biomed. Eng. 34, 187 (2006)

    Article  Google Scholar 

  28. H.I. Vargas, W.C. Dooley, R.A. Gardner, K.D. Gonzalez, R. Venegas, S.H. Heywang-Kobrunner, A.J. Fenn, Ann. Surg. Oncol. 11, 139 (2004)

    Article  Google Scholar 

  29. W.C. Dooley, H.I. Vargas, A.J. Fenn, M.B. Tomaselli, J.K. Harness, Ann. Surg. Oncol. 17, 1076 (2010)

    Article  Google Scholar 

  30. E.H. Wissler, J. Appl. Physiol. 85, 35 (1998)

    Google Scholar 

  31. M. Gautherie, Ann. N.Y. Acad. Sci. 335, 383 (1980)

    Article  ADS  Google Scholar 

  32. Electromagnetics Module Model Library, in COMSOL Multiphysics 3.5, (COMSOL AB, 2008)

  33. F.J. González, Rev. Mex. Fís. 53, 323 (2007)

    Google Scholar 

  34. M.F.J. Cepeda Rubio, A. Vera Hernández, L. Leija Salas, E. Ávila-Navarro, E.A. Navarro, Open Nanomed. J 3, 2 (2011)

    Article  Google Scholar 

  35. P. Prakash, Open Biomed. Eng. J. 4, 27 (2010)

    Google Scholar 

  36. S. García-Jimeno, R. Ortega-Palacios, M. Cepeda-Rubio, A. Vera, L. Leija, J. Estelrich, Prog. Electromagn. Res. 128, 229 (2012)

    Article  Google Scholar 

  37. P. Keangin, P. Rattanadecho, T. Wessapan, Int. Commun. Heat Mass Transf. 38, 757 (2011)

    Article  Google Scholar 

  38. K. Lweesy, L. Fraiwan, M. Al-Shalabi, L. Mohammad, R. Al-Oglah, J. Med. Biol. Eng. 30, 321 (2009)

    Article  Google Scholar 

  39. An Internet Resource for the Calculation of the Dielectric Properties of Body Tissues, Italian National Research Council, Institute for Applied Physics, “Nello Carrara,” Florence, Italy, http://niremf.ifac.cnr.it/tissprop/

  40. UT-085 datasheet. Micro-coax (Pottstown, PA)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario Francisco Jesus Cepeda Rubio.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cepeda Rubio, M.F.J., Guerrero López, G.D., Valdés Perezgasga, F. et al. Computer Modeling for Microwave Ablation in Breast Cancer Using a Coaxial Slot Antenna. Int J Thermophys 36, 2687–2704 (2015). https://doi.org/10.1007/s10765-015-1931-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10765-015-1931-2

Keywords

Navigation