Skip to main content
Log in

Monitoring of Aqueous Fullerene Dispersions by Thermal-Lens Spectrometry

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Aqueous fullerene solutions (dispersions) are very promising materials of biomedicine and biotechnology. Of importance are the traceability of their production and characterization of their optical and colloidal properties. Thermal-lens spectrometry, as a method suitable for both optical and thermophysical studies, was used to elucidate the forms of non-modified fullerenes in their aqueous dispersions and to determine low concentrations of \(\hbox {C}_{60}\) and \(\hbox {C}_{70}\) fullerenes. It was shown that the residual amounts of toluene in aqueous fullerene dispersions made according to the solvent-exchange protocol could be detected by thermal lensing. As a result, the technique for the production of aqueous fullerene dispersions was improved compared to the existing data providing higher fullerene concentrations. The limits of detection of \(\hbox {C}_{60}\) and \(\hbox {C}_{70}\) fullerenes are approximately \(100\,\hbox {ng}{\cdot }\hbox {mL}^{-1}\), which are 20-fold lower compared to conventional spectrophotometry. The distinction between aqueous fullerene dispersions in comparison with organic solutions of fullerenes caused by the formation of large clusters is shown by the comparison of transient and steady-state calibration curves for aqueous and organic fullerene solutions and model reference systems under various thermal-lens excitation conditions. The advantages of thermal lensing for such colloidal systems are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. M.D. Tzirakis, M. Orfanopoulos, Chem. Rev. 113, 5262 (2013). doi:10.1021/cr300475r

    Article  Google Scholar 

  2. E. Nakamura, H. Isobe, Acc. Chem. Res. 36, 807 (2003). doi:10.1021/ar030027y

    Article  Google Scholar 

  3. L. Xiao, H. Takada, K. Maeda, M. Haramoto, N. Miwa, Biomed. Pharmacother. 59, 351 (2005). doi:10.1016/j.biopha.2005.02.004

    Article  Google Scholar 

  4. M.E. Hilburn, B.S. Murdianti, R.D. Maples, J.S. Williams, J.T. Damron, S.I. Kuriyavar, K.D. Ausman, Colloids Surf. A 401, 48 (2012). doi:10.1016/j.colsurfa.2012.03.010

    Article  Google Scholar 

  5. D.Y. Lyon, L.K. Adams, J.C. Falkner, P.J.J. Alvarez, Environ. Sci. Technol. 40, 4360 (2006). doi:10.1021/es0603655

    Article  ADS  Google Scholar 

  6. B. Pycke, T.-C. Chao, P. Herckes, P. Westerhoff, R. Halden, Anal. Bioanal. Chem. 404, 2583 (2012). doi:10.1007/s00216-012-6090-8

    Article  Google Scholar 

  7. S. Niu, D. Mauzerall, J. Am. Chem. Soc. 118, 5791 (1996). doi:10.1021/ja9602410

    Article  Google Scholar 

  8. S. Dresselhaus, G. Dresselhaus, P.C. Eklund, Science of Fullerenes and Carbon Nanotubes: Their Properties and Application (Academic Press, San Diego, 1996)

    Google Scholar 

  9. A. Hirsch, M. Brettreich, F. Wudl, Fullerenes: Chemistry and Reactions (Wiley, Weinheim, 2006)

    Google Scholar 

  10. D.M. Guldi, M. Prato, Acc. Chem. Res. 33, 695 (2000). doi:10.1021/ar990144m

    Article  Google Scholar 

  11. R.S. Ruoff, R. Malhotra, D.L. Huestis, D.S. Tse, D.C. Lorents, Nature 362, 140 (1993)

    Article  ADS  Google Scholar 

  12. A. Dhawan, J.S. Taurozzi, A.K. Pandey, W. Shan, S.M. Miller, S.A. Hashsham, V.V. Tarabara, Environ. Sci. Technol. 40, 7394 (2006). doi:10.1021/es0609708

    Article  ADS  Google Scholar 

  13. R.D. Maples, M.E. Hilburn, B.S. Murdianti, R.S. Hikkaduwa Koralege, J.S. Williams, S.I. Kuriyavar, K.D. Ausman, J. Colloid Interface Sci. 370, 27 (2012). doi:10.1016/j.jcis.2011.12.060

    Article  Google Scholar 

  14. G.V. Andrievsky, M.V. Kosevich, O.M. Vovk, V.S. Shelkovsky, L.A. Vashchenko, J. Chem. Soc. D 12, 1281 (1995)

    Google Scholar 

  15. G.V. Andrievsky, V.K. Klochkov, A.B. Bordyuh, G.I. Dovbeshko, Chem. Phys. Lett. 364, 8 (2002). doi:10.1016/s0009-2614(02)01305-2

    Article  ADS  Google Scholar 

  16. V.L. Colvin, Nat. Biotechnol. 21, 1166 (2003)

    Article  Google Scholar 

  17. V.P. Sedov, V.V. Kukorenko, S.V. Kolesnik, V.A. Shilin, Y.S. Grushko, Fuller. Nanotub. Carbon Nanostruct. 20, 354 (2012). doi:10.1080/1536383x.2012.655179

    Article  Google Scholar 

  18. R. Mitra, S. Chattopadhyay, S. Bhattacharya, Spectrochim. Acta A 89, 284 (2012). doi:10.1016/j.saa.2011.12.013

    Article  ADS  Google Scholar 

  19. D.S. Volkov, P.I. Semenyuk, M.V. Korobov, M.A. Proskurnin, J. Anal. Chem. 67, 842 (2012). doi:10.1134/s1061934812100115

    Article  Google Scholar 

  20. D.S. Volkov, M.A. Proskurnin, I.V. Mikheev, D.V. Vasil’ev, M.V. Korobov, D.A. Nedosekin, V.P. Zharov, Application of photothermal and photoacoustic spectroscopy for the monitoring of aqueous dispersions of carbon nanomaterials, in Proceedings of the International Conference on Advanced Laser Technologies. (ISSN: 2296–312X) 1-Photoacoustics, Bern Open Publishing (2012). doi:10.12684/alt.1.94

  21. S.E. Bialkowski, Photothermal Spectroscopy Methods for Chemical Analysis (Wiley-Interscience, New York, 1996), p. 584

    Google Scholar 

  22. W.L.F. Armarego, C.L.L. Chai, Purification of Laboratory Chemicals (Butterworth-Heinemann, Burlington, MA, 2009)

    Google Scholar 

  23. M.A. Proskurnin, V.V. Kuznetsova, Anal. Chim. Acta 418, 101 (2000). doi:10.1016/s0003-2670(00)00949-1

    Article  Google Scholar 

  24. A.V. Brusnichkin, D.A. Nedosekin, M.A. Proskurnin, V.P. Zharov, Appl. Spectrosc. 61, 1191 (2007). doi:10.1366/000370207782597175

    Article  ADS  Google Scholar 

  25. A.P. Smirnova, V.V. Chernysh, N.A. Proskurnin, J. Anal. Chem. (Russ.) 59, 424 (2004). doi:10.1023/b:janc.0000026232.72862.83

    Article  Google Scholar 

  26. D.F. Keeley, M.A. Hoffpauir, J.R. Meriwether, J. Chem. Eng. Data 33, 87 (1988). doi:10.1021/je00052a006

    Article  Google Scholar 

  27. A.V. Brusnichkin, D.A. Nedosekin, E.I. Galanzha, Y.A. Vladimirov, E.F. Shevtsova, M.A. Proskurnin, V.P. Zharov, J. Biophotonics 3, 791 (2010). doi:10.1002/jbio.201000012

    Article  Google Scholar 

  28. D.A. Nedosekin, M. Sarimollaoglu, E.I. Galanzha, R. Sawant, V.P. Torchilin, V.V. Verkhusha, J. Ma, M.H. Frank, A.S. Biris, V.P. Zharov, J. Biophotonics 6, 425 (2013). doi:10.1002/jbio.201200047

    Article  Google Scholar 

  29. L.C. Malacarne, N.G.C. Astrath, G.V.B. Lukasievicz, E.K. Lenzi, M.L. Baesso, S.E. Bialkowski, Appl. Spectrosc. 65, 99 (2011). doi:10.1366/10-06096

    Article  ADS  Google Scholar 

  30. H.H. Richardson, M.T. Carlson, P.J. Tandler, P. Hernandez, A.O. Govorov, Nano Lett. 9, 1139 (2009). doi:10.1021/nl8036905

    Article  ADS  Google Scholar 

  31. B. Perrin, Microscale Nanoscale Heat Trans. 107, 333 (2007)

    ADS  Google Scholar 

  32. I.V. Mikheev, M.A. Proskurnin, D.S. Volkov, N.V. Avramenko, M.V. Korobov, Nanosystems 5, 46 (2014)

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Russian Foundation for Basic Research, Grant No. 12-03-00653-a and by the Grant for Leading Scientific Schools in Russia. We are grateful to Agilent Technologies Russia and to its head Dr. Konstantin Evdokimov for providing the Agilent equipment used in this study. We are also grateful to Dr. P.I. Semenyuk at the A.N. Belozersky Institute of Physicochemical Biology of the Moscow State University for dynamic light scattering data and to Dr. A.A. Bendryshev for LC–MS measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Mikheev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mikheev, I.V., Volkov, D.S., Proskurnin, M.A. et al. Monitoring of Aqueous Fullerene Dispersions by Thermal-Lens Spectrometry. Int J Thermophys 36, 956–966 (2015). https://doi.org/10.1007/s10765-014-1814-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10765-014-1814-y

Keywords

Navigation