Skip to main content
Log in

Thermal Transport in High-Strength Polymethacrylimide (PMI) Foam Insulations

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Thermal transport in high-strength polymethacrylimide (PMI) foam insulations is described, with special emphasis on the density and temperature effects on the thermal transport performance. Measurements of the effective thermal conductivity are performed by a freestanding sensor-based \(3\omega \) method. A linear relationship between the density and the effective thermal conductivity is observed. Based on the analysis of the foam insulation morphological structures and the corresponding geometrical cell model, the quantitative contribution of the solid conductivity and the gas conductivity as well as the radiative conductivity to the total effective thermal conductivity as a function of the density and temperature is calculated. The agreement between the curves of the results from the developed model and experimental data indicate the model can be used for PMI foam insulating performance optimization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

\(A\) :

Transfer parameter

\(b\) :

Half-width of the metal strip

\(B\) :

Parameter

\(d\) :

Thickness

\(e\) :

Emissive power

\(f\) :

Mass fraction

\(I\) :

Electric current

\(K\) :

Extinction coefficient

\(l\) :

Length between two inside pads

\(L\) :

Thickness of the thin sample

\(P\) :

Heating power

\(q\) :

Heat flux

\(t\) :

Time

\(T\) :

Transmission, temperature

\(U\) :

Electric voltage

\(V\) :

Volume

\(\alpha _\mathrm{CR}\) :

Temperature coefficient of resistance

\(\beta \) :

Integrating factor

\(\delta \) :

Porosity

\(\lambda \) :

Thermal conductivity

\(\varLambda \) :

Wavelength

\(\rho \) :

Density

\(\sigma _\mathrm{B}\) :

Stefan–Boltzmann constant

\(\tau \) :

Optical thickness

\(\varPhi \) :

Diameter

\(\omega \) :

Angular frequency

b:

Blackbody

c:

Cell

e:

Effective

f:

Foam

g:

Gaseous

m:

Mean

r:

Radiative

s:

Strut, solid

w:

Wall

0:

Bulk material

\(1\omega \) :

First harmonic component

\(3\omega \) :

Third harmonic component

References

  1. H.F. Seibert, Reinf. Plast. 50, 44 (2006)

    Article  ADS  Google Scholar 

  2. V.L. Rizov, Mater. Des. 27, 947 (2006)

    Article  Google Scholar 

  3. H.Y. Tang, L. Chen, Adv. Mater. Res. 160–162, 1309 (2011)

    Google Scholar 

  4. Roehm & Haas GM BH, Foamable thermoplastic synthetic resins. GB 1045229 (1966)

  5. P. Huch, G. Schröder, Verfahren zur Herstellung von durch Erhitzen schaeum baren Kunststoffen. DE 1595214 (1970)

  6. J. Wang, S.Y. Lai, F.X. Li, Adv. Mater. Res. 600, 157 (2012)

    Article  ADS  Google Scholar 

  7. G. Marsh, Reinf. Plast. 54, 31 (2010)

    Article  Google Scholar 

  8. Röhm GmbH & Co. KG, Polymethacrylimide plastic foam materials with reduced inflammability in addition to a method for the production thereof. EP 1478690 (2005)

  9. J. Kuhn, H.-P. Ebert, M.C. Arduini-Schuster, D. Büttner, J. Fricke, Int. J. Heat Mass Transf. 35, 1795 (1992)

    Article  Google Scholar 

  10. E. Placido, M.C. Arduini-Schuster, J. Kuhn, Infrared Phys. Technol. 46, 219 (2005)

    Article  ADS  Google Scholar 

  11. L.M. Zwolinski, in Insulation Materials, Testing and Applications, ed. by D.L. McElroy, J.F. Kimpflen (American Society for Testing and Materials, Philadelphia, 1990), p. 189

  12. M. Bomberg, D.A. Brandreth, in Insulation Materials, Testing and Applications, ed. by D.L. MeElroy, J.F. Kimpflen (American Society for Testing and Materials, Philadelphia, 1990), p. 156

  13. R. Caps, U. Heinemann, J. Fricke, Int. J. Heat Mass Transf. 40, 269 (1997)

    Article  Google Scholar 

  14. T. Chen, G.C. Zhang, X.H. Zhao, J. Polym. Res. 17, 171 (2010)

    Article  Google Scholar 

  15. S.Q. Zeng, R. Greif, P. Stevens, M. Avers, A. Hunt, J. Mater. Res. 11, 687 (1996)

    Article  ADS  Google Scholar 

  16. U. Heinemann, R. Caps, J. Fricke, Int. J. Heat Mass Transf. 39, 2115 (1996)

    Article  Google Scholar 

  17. R. Siegel, J.R. Howell, Thermal Radiation Heat Transfer, 3rd edn. (Taylor & Francis, New York, 1992)

    Google Scholar 

  18. L. Qiu, D.W. Tang, X.H. Zheng, G.P. Su, Rev. Sci. Instrum. 82, 045106 (2011)

    Article  ADS  Google Scholar 

  19. L. Qiu, X.H. Zheng, G.P. Su, D.W. Tang, Int. J. Thermophys. 34, 2261 (2013)

    Article  ADS  Google Scholar 

  20. L.R. Glicksman, in Low Density Cellular Plastics, ed. by N.C. Hilyard, A. Cunningham (Chapman & Hall, London, 1994), p. 115

    Google Scholar 

  21. L.R. Glicksman, M. Torpey, J. Build. Phys. 12, 257 (1989)

    Article  Google Scholar 

  22. K. Kadoya, N. Matsunaga, A. Nagashima, J. Phys. Chem. Ref. Data 14, 947 (1985)

    Article  ADS  Google Scholar 

  23. H.W. Russell, J. Am. Ceram. Soc. 18, 1 (1935)

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge financial support from Projects 51306183 and 51336009 supported by National Natural Science Foundation of China and National Basic Research Program of China (Grant No. 2012CB933200).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. H. Zheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiu, L., Zheng, X.H., Zhu, J. et al. Thermal Transport in High-Strength Polymethacrylimide (PMI) Foam Insulations. Int J Thermophys 36, 2523–2534 (2015). https://doi.org/10.1007/s10765-014-1651-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10765-014-1651-z

Keywords

Navigation