Skip to main content

Thermal Conductivity of Phenolic Foams

  • Chapter
  • First Online:
Phenolic Based Foams

Part of the book series: Gels Horizons: From Science to Smart Materials ((GHFSSM))

Abstract

Thermal insulation materials are the key structures in many application areas for the conservation of energy and control of heat transfer. Phenolic foams (PFs) are known as rigid thermosetting polymeric foams with outstanding chemical resistance, outstanding thermal and acoustic insulation performances, excellent flame resistance, and low smoke production. Theoretical models and heat transfer mechanisms have been developed for the prediction of thermal conductivity by taking the cellular morphologies such as porosity, cell size, as well as cell structures and cell wall into consideration. Significant efforts have been devoted to decrease the thermal conductivity and improve the insulation properties of phenolic foams, which are expected to enable a broader range of applications. Various types of thermally insulating phenolic foams containing different matrix, micro- or nanofillers, and hollow particles, as well as the phenolic-based carbon foams are systematically summarized to understand the control and optimization of cellular morphology and thermal conductivity. Owing to the extremely low thermal conductivity combined with other satisfactory comprehensive properties, phenolic foams have attracted great attention for thermal insulation materials in applications such as aerospace, building, shipbuilding, petroleum, and chemical industry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tseng CJ, Kuo KT (2002) Thermal radiative properties of phenolic foam insulation. J Quant Spectrosc Radiat Transfer 72(4):349–359

    Article  CAS  Google Scholar 

  2. Fan W, Zhang X, Zhang Y et al (2019) Lightweight, strong, and super-thermal insulating polyimide composite aerogels under high temperature. Compos Sci Technol 173:47–52

    Article  CAS  Google Scholar 

  3. Hasanzadeh R, Azdast T, Doniavi A et al (2019) Multi-objective optimization of heat transfer mechanisms of microcellular polymeric foams from thermal-insulation point of view. Therm Sci Eng Prog 9:21–29

    Article  Google Scholar 

  4. Arduini Schuster M, Manara J, Vo C (2015) Experimental characterization and theoretical modeling of the infrared-optical properties and the thermal conductivity of foams. Int J Therm Sci 98:156–164

    Article  CAS  Google Scholar 

  5. Ma Z, Zhang G, Yang Q et al (2018) Tailored morphologies and properties of high-performance microcellular poly(phenylene sulfide)/poly(ether ether ketone) (PPS/PEEK) blends. J Supercrit Fluids 140:116–128

    Article  CAS  Google Scholar 

  6. Ma Z, Zhang G, Yang Q et al (2013) Fabrication of microcellular polycarbonate foams with unimodal or bimodal cell-size distributions using supercritical carbon dioxide as a blowing agent. J Cell Plast 50(1):55–79

    Article  CAS  Google Scholar 

  7. Hu F, Wu S, Sun Y (2019) Hollow-structured materials for thermal insulation. Adv Mater 31(38):1801001

    Article  CAS  Google Scholar 

  8. Gibson LJ, Ashby MF (1997) Cellular solids: structure and properties. Cambridge University Press

    Book  Google Scholar 

  9. Cheng H, Xue H, Hong C et al (2017) Preparation, mechanical, thermal and ablative properties of lightweight needled carbon fibre felt/phenolic resin aerogel composite with a bird’s nest structure. Compos Sci Technol 140:63–72

    Article  CAS  Google Scholar 

  10. Huang C, Huang Z, Wang Q (2018) Effect of high-temperature treatment on the mechanical and thermal properties of phenolic syntactic foams. Polym Eng Sci 58(12):2200–2209

    Article  CAS  Google Scholar 

  11. Notario B, Pinto J, Solorzano E et al (2015) Experimental validation of the Knudsen effect in nanocellular polymeric foams. Polymer 56:57–67

    Article  CAS  Google Scholar 

  12. Baetens R, Jelle BP, Gustavsen A (2011) Aerogel insulation for building applications: a state-of-the-art review. Energy Build 43(4):761–769

    Article  Google Scholar 

  13. Huang HX, Xu HF (2011) Preparation of microcellular polypropylene/polystyrene blend foams with tunable cell structure. Polym Adv Technol 22(6):822–829

    Article  CAS  Google Scholar 

  14. Yen YC, Lee T, Chiu D et al (2014) Polystyrene foams with inter-connected carbon particulate network. J Cell Plast 50(5):437–448

    Article  CAS  Google Scholar 

  15. Septevani AA, DaC E, Annamalai PK et al (2017) The use of cellulose nanocrystals to enhance the thermal insulation properties and sustainability of rigid polyurethane foam. Ind Crops Prod 107:114–121

    Article  CAS  Google Scholar 

  16. Luo F, Wu K, Lu M et al (2015) Thermal degradation and flame retardancy of microencapsulated ammonium polyphosphate in rigid polyurethane foam. J Therm Anal Calorim 120(2):1327–1335

    Article  CAS  Google Scholar 

  17. Rodríguez Pérez MA, González-Peña JI, Witten N et al (2002) The effect of cell size on the physical properties of crosslinked closed cell polyethylene foams produced by a high pressure nitrogen solution process. Cell Polym 21(3):165–194

    Article  Google Scholar 

  18. Luong DD, Pinisetty D, Gupta N (2013) Compressive properties of closed-cell polyvinyl chloride foams at low and high strain rates: Experimental investigation and critical review of state of the art. Compos B 44(1):403–416

    Article  CAS  Google Scholar 

  19. Ma Y, Wang J, Xu Y, et al. (2015) Effect of zinc oxide on properties of phenolic foams/halogen-free flame retardant system. J Appl Polym Sci 132(44).

    Google Scholar 

  20. Lee LJ, Zeng C, Cao X et al (2005) Polymer nanocomposite foams. Compos Sci Technol 65(15):2344–2363

    Article  CAS  Google Scholar 

  21. Ma Z, Zhang G, Yang Q et al (2015) Mechanical and dielectric properties of microcellular polycarbonate foams with unimodal or bimodal cell-size distributions. J Cell Plast 51(3):307–327

    Article  CAS  Google Scholar 

  22. Kim BG, Lee DG (2008) Development of microwave foaming method for phenolic insulation foams. J Mater Process Technol 201(1):716–719

    Article  CAS  Google Scholar 

  23. Jalalian M, Jiang Q, Coulon A, et al. (2019) Mechanically whipped phenolic froths as versatile templates for manufacturing phenolic and carbon foams. Mater Des 168: 107658.

    Google Scholar 

  24. Delgado Sánchez C, Sarazin J, Santiago Medina FJ et al (2018) Impact of the formulation of biosourced phenolic foams on their fire properties. Polym Degrad Stab 153:1–14

    Article  CAS  Google Scholar 

  25. Mougel C, Garnier T, Cassagnau P et al (2019) Phenolic foams: A review of mechanical properties, fire resistance and new trends in phenol substitution. Polymer 164:86–117

    Article  CAS  Google Scholar 

  26. Liu J, Li X, Zhou C (2018) Mechanical and thermal properties of modified red mud-reinforced phenolic foams. Polym Int 67(5):528–534

    Article  CAS  Google Scholar 

  27. Li Q, Chen L, Ding J et al (2016) Open-cell phenolic carbon foam and electromagnetic interference shielding properties. Carbon 104:90–105

    Article  CAS  Google Scholar 

  28. Song SA, Chung YS, Kim SS (2014) The mechanical and thermal characteristics of phenolic foams reinforced with carbon nanoparticles. Compos Sci Technol 103:85–93

    Article  CAS  Google Scholar 

  29. Yun MS, Lee WI (2008) Analysis of bubble nucleation and growth in the pultrusion process of phenolic foam composites. Compos Sci Technol 68(1):202–208

    Article  CAS  Google Scholar 

  30. Del Saz OB, Oliet M, Alonso MV et al (2012) Formulation optimization of unreinforced and lignin nanoparticle-reinforced phenolic foams using an analysis of variance approach. Compos Sci Technol 72(6):667–674

    Article  CAS  Google Scholar 

  31. Del Saz OB, Alonso MV, Oliet M et al (2014) Effects of formulation variables on density, compressive mechanical properties and morphology of wood flour-reinforced phenolic foams. Compos B 56:546–552

    Article  CAS  Google Scholar 

  32. Xu Q, Gong R, Cui MY et al (2015) Preparation of high-strength microporous phenolic open-cell foams with physical foaming method. High Perform Polym 27(7):852–867

    Article  CAS  Google Scholar 

  33. Rochefort Malcolm RL, Holland Philip, Coppock Vincent (2014) Phenolic Foam. UK Pat. Appl. GB 2, 505, 974 A, 19 Mar 2014.

    Google Scholar 

  34. Gong R, Xu Q, Chu Y et al (2015) A simple preparation method and characterization of epoxy reinforced microporous phenolic open-cell sound absorbent foam. RSC Adv 5(83):68003–68013

    Article  CAS  Google Scholar 

  35. Forest C, Chaumont P, Cassagnau P et al (2015) Polymer nano-foams for insulating applications prepared from CO2 foaming. Prog Polym Sci 41:122–145

    Article  CAS  Google Scholar 

  36. De Carvalho G, Pimenta JA, Dos Santos WN et al (2003) Phenolic and lignophenolic closed cells foams: thermal conductivity and other properties. Polym-Plast Technol Eng 42(4):605–626

    Article  CAS  Google Scholar 

  37. Li Q, Chen L, Li X, et al. (2016) Effect of nano-titanium nitride on thermal insulating and flame-retardant performances of phenolic foam. J Appl Polym Sci 133(32).

    Google Scholar 

  38. Braginsky L, Shklover V, Witz G, et al. (2007) Thermal conductivity of porous structures. Phys Rev B 75(9): 094301.

    Google Scholar 

  39. Thirumal M, Khastgir D, Singha NK et al (2008) Effect of foam density on the properties of water blown rigid polyurethane foam. J Appl Polym Sci 108(3):1810–1817

    Article  CAS  Google Scholar 

  40. Ferkl P, Toulec M, Laurini E et al (2017) Multi-scale modelling of heat transfer in polyurethane foams. Chem Eng Sci 172:323–334

    Article  CAS  Google Scholar 

  41. Placido E, Arduini-Schuster MC, Kuhn J (2005) Thermal properties predictive model for insulating foams. Infrared Phys Technol 46(3):219–231

    Article  CAS  Google Scholar 

  42. Kim J, Lee JH, Song TH (2012) Vacuum insulation properties of phenolic foam. Int J Heat Mass Transfer 55(19):5343–5349

    Article  CAS  Google Scholar 

  43. Kwon JS, Jang CH, Jung H et al (2009) Effective thermal conductivity of various filling materials for vacuum insulation panels. Int J Heat Mass Transfer 52(23):5525–5532

    Article  CAS  Google Scholar 

  44. Gupta N, Pinisetty D (2013) A review of thermal conductivity of polymer matrix syntactic foams-effect of hollow particle wall thickness and volume fraction. JOM 65(2):234–245

    Article  CAS  Google Scholar 

  45. Chsner A, Murch GE (2011) Heat transfer in multi-phase materials. Springer, Berlin Heidelberg

    Book  Google Scholar 

  46. Felske JD (2004) Effective thermal conductivity of composite spheres in a continuous medium with contact resistance. Int J Heat Mass Transfer 47(14):3453–3461

    Article  Google Scholar 

  47. Liu L, Fu M, Wang Z (2015) Synthesis of boron-containing toughening agents and their application in phenolic foams. Ind Eng Chem Res 54(7):1962–1970

    Article  CAS  Google Scholar 

  48. Auad ML, Zhao L, Shen H et al (2007) Flammability properties and mechanical performance of epoxy modified phenolic foams. J Appl Polym Sci 104(3):1399–1407

    Article  CAS  Google Scholar 

  49. Yang H, Wang X, Yu B et al (2013) A novel polyurethane prepolymer as toughening agent: Preparation, characterization, and its influence on mechanical and flame retardant properties of phenolic foam. J Appl Polym Sci 128(5):2720–2728

    Article  CAS  Google Scholar 

  50. Lei S, Guo Q, Zhang D et al (2010) Preparation and properties of the phenolic foams with controllable nanometer pore structure. J Appl Polym Sci 117(6):3545–3550

    CAS  Google Scholar 

  51. Zhuang XW, Li SH, Ma YF et al (2011) Preparation and characterization of lignin-phenolic foam. Adv Mater Res 236–238:1014–1018

    Article  CAS  Google Scholar 

  52. Niu M, Wang GJ (2013) Study on the nanocomposite foam of cardanol phenolic resin and organo-modified montmorillonite. Adv Mater Res 712–715:147–155

    Article  CAS  Google Scholar 

  53. Zhou M, Shi H, Li C et al (2020) Depolymerization and activation of alkali lignin by solid acid-catalyzed phenolation for preparation of lignin-based phenolic foams. Ind Eng Chem Res 59(32):14296–14305

    Article  CAS  Google Scholar 

  54. Lagel MC, Pizzi A, Giovando S et al (2014) Development and characterisation of phenolic foams with phenol-formaldehyde-chestnut tannins resin. J Renewable Mater 2(3):220–229

    Article  Google Scholar 

  55. Merle J, Birot M, Deleuze H et al (2016) New biobased foams from wood byproducts. Mater Des 91:186–192

    Article  CAS  Google Scholar 

  56. Li B, Feng SH, Niasar HS et al (2016) Preparation and characterization of bark-derived phenol formaldehyde foams. RSC Adv 6(47):40975–40981

    Article  CAS  Google Scholar 

  57. Li B, Wang Y, Mahmood N et al (2017) Preparation of bio-based phenol formaldehyde foams using depolymerized hydrolysis lignin. Ind Crops Prod 97:409–416

    Article  CAS  Google Scholar 

  58. Wang G, Liu X, Zhang J et al (2018) One-pot lignin depolymerization and activation by solid acid catalytic phenolation for lightweight phenolic foam preparation. Ind Crops Prod 124:216–225

    Article  CAS  Google Scholar 

  59. Londoño Zuluaga C, Du J, Chang HM et al (2018) Lignin modifications and perspectives towards applications of phenolic foams: A review. BioResources 13:9158–9179

    Article  Google Scholar 

  60. Sandhya PK, Sreekala MS, Boudenne A, et al. (2020) Thermal and electrical properties of phenol formaldehyde foams reinforcing with reduced graphene oxide. Polym Compos 1–11.

    Google Scholar 

  61. Del Saz OB, Alonso MV, Oliet M et al (2015) Mechanical, thermal and morphological characterization of cellulose fiber-reinforced phenolic foams. Compos B 75:367–372

    Article  CAS  Google Scholar 

  62. Rangari VK, Hassan TA, Zhou Y et al (2007) Cloisite clay-infused phenolic foam nanocomposites. J Appl Polym Sci 103(1):308–314

    Article  CAS  Google Scholar 

  63. Yuan J, Zhang Y, Wang Z (2015) Phenolic foams toughened with crosslinked poly (n-butyl acrylate)/silica core-shell nanocomposite particles. J Appl Polym Sci 132:42590

    Article  CAS  Google Scholar 

  64. Li J, Zhang A, Zhang S et al (2019) Larch tannin-based rigid phenolic foam with high compressive strength, low friability, and low thermal conductivity reinforced by cork powder. Compos B 156:368–377

    Article  CAS  Google Scholar 

  65. Li Q, Chen L, Li X et al (2016) Effect of multi-walled carbon nanotubes on mechanical, thermal and electrical properties of phenolic foam via in-situ polymerization. Compos A 82:214–225

    Article  CAS  Google Scholar 

  66. Song F, Jia P, Bo C et al (2021) The mechanical and flame retardant characteristics of lignin-based phenolic foams reinforced with MWCNTs by in-situ polymerization. J Dispersion Sci Technol 42:1042–1051

    Article  CAS  Google Scholar 

  67. Song SA, Oh HJ, Kim BG et al (2013) Novel foaming methods to fabricate activated carbon reinforced microcellular phenolic foams. Compos Sci Technol 76:45–51

    Article  CAS  Google Scholar 

  68. Ge D, Shi M, Yao Y, et al. (2019) Preparation and properties of anti-insulation integrated phenolic resin composites. IOP Conf Ser: Mater Sci Eng 472: 012047.

    Google Scholar 

  69. Wang S, Luo R, Ni Y (2010) Preparation and characterization of resin-derived carbon foams reinforced by hollow ceramic microspheres. Mater Sci Eng A 527(15):3392–3395

    Article  CAS  Google Scholar 

  70. Pulci G, Tirillò J, Marra F et al (2010) Carbon-phenolic ablative materials for re-entry space vehicles: Manufacturing and properties. Compos A 41(10):1483–1490

    Article  CAS  Google Scholar 

  71. Wu X, Liu YG, Fang M et al (2011) Preparation and characterization of carbon foams derived from aluminosilicate and phenolic resin. Carbon 49(5):1782–1786

    Article  CAS  Google Scholar 

  72. Chuang W, Lei P, Zhen Hai S, et al. (2019) Preparation, thermal stability and deflection of a density gradient thermally-conductive carbon foam material derived from phenolic resin. Results Phys 14: 102448.

    Google Scholar 

  73. Song SA, Lee Y, Kim YS et al (2017) Mechanical and thermal properties of carbon foam derived from phenolic foam reinforced with composite particles. Compos Struct 173:1–8

    Article  Google Scholar 

  74. Farhan S, Wang RM, Jiang H et al (2014) Preparation and characterization of carbon foam derived from pitch and phenolic resin using a soft templating method. J Anal Appl Pyrolysis 110:229–234

    Article  CAS  Google Scholar 

  75. Lei S, Guo Q, Shi J et al (2010) Preparation of phenolic-based carbon foam with controllable pore structure and high compressive strength. Carbon 48(9):2644–2646

    Article  CAS  Google Scholar 

  76. Zhang L, Ma J (2009) Processing and characterization of syntactic carbon foams containing hollow carbon microspheres. Carbon 47(6):1451–1456

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhonglei Ma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ma, Z. (2022). Thermal Conductivity of Phenolic Foams. In: P.K, S., M.S., S., Thomas, S. (eds) Phenolic Based Foams. Gels Horizons: From Science to Smart Materials. Springer, Singapore. https://doi.org/10.1007/978-981-16-5237-0_9

Download citation

Publish with us

Policies and ethics