Skip to main content
Log in

A New Model for the Thermal Conductivity of Molten Salts

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

A new model based on rough hard-sphere theory is proposed for the thermal conductivity of molten salts. The model incorporates a smooth hard-sphere contribution using the properties of argon, as well as characteristic parameters based on the melting point of the molten salt. It is demonstrated that it is possible to correlate the thermal conductivity of monovalent and multivalent molten salts within experimental error using this approach. Furthermore, in salts with a common anion, the single adjustable parameter in the model exhibits regular behavior with the molecular weight of the salt. It is also shown that the thermal conductivity of several molten-salt mixtures can be predicted without any mixture parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. E.A. Smol’nikov, L.M. Sarmanova, A.A. Lukhvich, V.I. Sharando, Met. Sci. Heat Treat. 29, 131 (1987)

    Article  Google Scholar 

  2. R.E. Thoma, B.J. Sturm, E.H. Guinn, Molten-Salt Solvents for Fluoride Volatility Processing of Aluminium-Matrix Nuclear Fuel Elements (Oak Ridge National Laboratory, Oak Ridge, TN, 1964)

  3. Q. Peng, X. Yang, J. Ding, X. Wei, J. Yang, Appl. Energy 112, 682 (2013)

    Article  Google Scholar 

  4. T. Bauer, N. Pfleger, N. Breidenbach, M. Eck, D. Laing, S. Kaesche, Appl. Energy 111, 1114 (2013)

    Article  Google Scholar 

  5. J.W. Raade, D. Padowitz, J. Sol. Energy 133, 031013 (2011)

    Google Scholar 

  6. N. Ohtori, T. Oono, K. Takase, J. Chem. Phys. 130, 044505 (2009)

    Article  ADS  Google Scholar 

  7. R.M. DiGuilio, A.S. Teja, Int. J. Thermophys. 13, 855 (1992)

    Article  ADS  Google Scholar 

  8. P.W. Bridegman, The Physics of High Pressures (G. Bell and Sons Ltd., London, 1949)

    Google Scholar 

  9. J.F. Kincaid, H. Eyring, J. Chem. Phys. 6, 620 (1938)

    Article  ADS  Google Scholar 

  10. Y. Nagasaka, A. Nagashima, Int. J. Thermophys. 12, 769 (1991)

    Article  ADS  Google Scholar 

  11. A.G. Turnbull, Aust. J. Appl. Sci. 9, 324 (1961)

    Google Scholar 

  12. M.R. Rao, J. Chem. Phys. 9, 120 (1941)

    Article  ADS  Google Scholar 

  13. L.R. White, H.T. Davis, J. Chem. Phys. 47, 5433 (1967)

    Article  ADS  Google Scholar 

  14. R.E. Young, J.P. O’Connell, Ind. Eng. Chem. Fundam. 10, 418 (1971)

    Article  Google Scholar 

  15. D. Chandler, J. Chem. Phys. 62, 1358 (1975)

    Article  ADS  Google Scholar 

  16. S.F.Y. Li, R.D. Trengove, W.A. Wakeham, M. Zalaf, Int. J. Thermophys. 7, 273 (1986)

    Article  ADS  Google Scholar 

  17. M.J. Assael, J.H. Dymond, M. Papadaki, P.M. Patterson, Int. J. Thermophys. 13, 269 (1992)

    Article  ADS  Google Scholar 

  18. M.J. Assael, J.H. Dymond, M. Papadaki, P.M. Patterson, Fluid Phase Equilib. 75, 245 (1992)

    Article  Google Scholar 

  19. M.J. Assael, J.H. Dymond, P.M. Patterson, Int. J. Thermophys. 13, 895 (1992)

    Article  ADS  Google Scholar 

  20. M.J. Assael, J.H. Dymond, S.K. Polimatidou, Int. J. Thermophys. 15, 189 (1994)

    Article  ADS  Google Scholar 

  21. M.J. Assael, J.H. Dymond, S.K. Polimatidou, Int. J. Thermophys. 16, 761 (1995)

    Article  ADS  Google Scholar 

  22. T. Sun, A.S. Teja, J. Chem. Eng. Data 54, 2527 (2009)

    Article  Google Scholar 

  23. Y.S. Touloukian, P.E. Liley, S.C. Saxena (eds.), Thermal Conductivity of Argon. Nonmetallic Liquids and Gases. Thermal Conductivity (IFI/Plenum Press, New York, 1970)

  24. B.A. Younglove, H.J.M. Hanley, J. Phys. Chem. Ref. Data 15, 1323 (1986)

    Article  ADS  Google Scholar 

  25. H.M. Roder, C.A. Nieto de Castro, U.V. Mardolcar, Int. J. Thermophys. 8, 521 (1987)

    Article  ADS  Google Scholar 

  26. V.A. Rabinovich, A.A. Wasserman, V.I. Nedostup, L.S. Veksler, Properties of Neon, Argon, Krypton and Xenon (IZD Standartov, Moscow, 1976); translation from Russian in Monograph of the National Standard Reference Data Service of the USSR (Hemisphere Publishing Co., New York, 1988)

  27. Y. Nagasaka, N. Nakazawa, A. Nagashima, Int. J. Thermophys. 13, 555 (1992)

    Article  ADS  Google Scholar 

  28. S. Kitade, Y. Kobayashi, A. Nagashima, High Temp. High Press. 21, 219 (1989)

    Google Scholar 

  29. N. Nakazawa, Y. Nagasaka, A. Nagashima, Int. J. Thermophys. 13, 763 (1992)

    Article  ADS  Google Scholar 

  30. N. Nakazawa, Y. Nagasaka, A. Nagashima, Int. J. Thermophys. 13, 753 (1992)

    Article  ADS  Google Scholar 

  31. G.J. Janz, Molten Salts Handbook (Academic Press, New York, 1967)

    Google Scholar 

  32. R. Tufeu, J.P. Petitet, L. Denielou, B. Neindre, Int. J. Thermophys. 6, 315 (1985)

    Article  ADS  Google Scholar 

  33. T. Omotani, Y. Nagasaka, A. Nagashima, Int. J. Thermophys. 3, 17 (1982)

    Article  ADS  Google Scholar 

  34. M.V. Smirnov, V.A. Khokhlov, E.S. Filatov, Electrochim. Acta 32, 1019 (1987)

    Article  Google Scholar 

  35. T. Omotani, A. Nagashima, J. Chem. Eng. Data 29, 1 (1984)

    Article  Google Scholar 

Download references

Acknowledgments

Partial support for this research was provided by the United States Department of Energy (Award # DE-EE0005942) and the Grassman Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amyn S. Teja.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hossain, M.Z., Kassaee, M.H., Jeter, S. et al. A New Model for the Thermal Conductivity of Molten Salts. Int J Thermophys 35, 246–255 (2014). https://doi.org/10.1007/s10765-014-1573-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10765-014-1573-9

Keywords

Navigation