Skip to main content
Log in

Correlation and prediction of dense fluid transport coefficients. V. Aromatic hydrocarbons

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

A previously described method, based on consideration of hard-sphere theory, is used for the simultaneous correlation of the coefficients of self-diffusion, viscosity, and thermal conductivity for benzene, toluene, o-, m-, and p-xylene, mesitylene, and ethylbenzene in excellent agreement with experiment, over extended temperature and pressure ranges. Values are given for the roughness factors R D , R η, and R λ, and the characteristic volume, V 0, is expressed as a function of both carbon number and temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. J. Assael, J. H. Dymond, and V. Tselekidou, Int. J. Thermophys. 11:8 (1990).

    Google Scholar 

  2. M. J. Assael, J. H. Dymond, M. Papadaki, and P. M. Patterson, Int. J. Thermophys. 13:269 (1992).

    Google Scholar 

  3. M. J. Assael, J. H. Dymond, M. Papadaki, and P. M. Patterson, Fluid Phase Equil. (in press).

  4. M. J. Assael, J. H. Dymond, M. Papadaki, and P. M. Patterson, Int. J. Thermophys. 13:659 (1992).

    Google Scholar 

  5. D. Chandler, J. Chem. Soc. 62:1358 (1975).

    Google Scholar 

  6. M. J. Assael, J. H. Dymond, and P. M. Patterson, Int. J. Thermophys. 13:729 (1992).

    Google Scholar 

  7. J. J. Erpenbeck and W. W. Wood, Phys. Rev. A 43:4254 (1991).

    Google Scholar 

  8. D. Enskog, Kungl. Svensks. Vet.-Ak. Handl. 4:63 (1922).

    Google Scholar 

  9. J. H. Dymond, Proc. 6th Symp. Thermophys. Prop. (ASME, New York, 1973), p. 143.

    Google Scholar 

  10. B. J. Alder, D. M. Gass, and T. E. Wainwright, J. Chem. Phys. 53:3813 (1970).

    Google Scholar 

  11. K. R. Harris, Physica 94A:448 (1978).

    Google Scholar 

  12. H. J. Parkhurst and J. Jonas, J. Chem. Phys. 63:2698 (1975).

    Google Scholar 

  13. M. A. McCool, A. F. Collings, and L. A. Woolf, J. Chem. Soc. Faraday I 68:1489 (1972).

    Google Scholar 

  14. A. F. Collings and L. A. Woolf, J. Chem. Soc. Faraday I 71:2296 (1975).

    Google Scholar 

  15. J. H. Dymond and J. Robertson, Int. J. Thermophys. 6:21 (1985).

    Google Scholar 

  16. B. Knapstad, P. A. Skjolsvik, and H. A. Oye, J. Chem. Eng. Data 34:37 (1989).

    Google Scholar 

  17. J. H. Dymond and K. J. Young, Int. J. Thermophys. 2:237 (1981).

    Google Scholar 

  18. M. J. Assael, M. Papadaki, and W. A. Wakeham, Int. J. Thermophys. 12:449 (1991).

    Google Scholar 

  19. J. H. Dymond, J. Robertson, and J. D. Isdale, Int. J. Thermophys. 2:223 (1981).

    Google Scholar 

  20. H. J. Parkhurst and J. Jonas, J. Chem. Phys. 63:2705 (1975).

    Google Scholar 

  21. H. Kashiwagi and T. Makita, Int. J. Thermophys. 3:289 (1982); personal communication (1985).

    Google Scholar 

  22. D. A. Berstad, Viscosity and Density of n-Hexane, Cyclohexane and Benzene, and Their Binary Mixtures with Methane (University of Trondheim—NTH, The Norwegian Institute of Technology, Institute of Inorganic Chemistry, Trondheim, 1989).

    Google Scholar 

  23. M. J. Assael, E. Charitidou, and Ch. Molidou, Int. J. Thermophys. 9:37 (1988).

    Google Scholar 

  24. M. L. V. Ramires, F. J. Vieira dos Santos, U. V. Mardolcar, and C. A. Nieto de Castro, Int. J. Thermophys. 10:1005 (1989).

    Google Scholar 

  25. S. F. Y. Li, G. C. Maitland, and W. A. Wakeham, Int. J. Thermophys. 5:351 (1984).

    Google Scholar 

  26. J. Alexander and K. R. Harris, personal communication (1991).

  27. F. A. Goncalves, K. Hamano, J. V. Sengers, and J. Kestin, Int. J. Thermophys. 8:641 (1987).

    Google Scholar 

  28. J. H. Dymond, M. A. Awan, N. F. Glen, and J. D. Isdale, Int. J. Thermophys. 12:275 (1991).

    Google Scholar 

  29. C. de Oliveira, Viscosity of Liquid Hydrocarbons at High Pressure (Ph.D. thesis, University of London, London, 1991).

    Google Scholar 

  30. E. Charitidou, M. Dix, M. J. Assael, C. A. Nieto de Castro, and W. A. Wakeham, Int. J. Thermophys. 8:511 (1987).

    Google Scholar 

  31. H. Kashiwagi, T. Hashimoto, Y. Tanaka, H. Kuboto, and T. Makita, Int. J. Thermophys. 3:201 (1982).

    Google Scholar 

  32. S. F. Y. Li, Ph.D. thesis (Imperial College, London, 1984); densities from Ref. 31.

    Google Scholar 

  33. M. J. Assael, E. Charitidou, and S. Avgoustiniatos, Int. J. Thermophys. 9:501 (1988).

    Google Scholar 

  34. B. Taxis, M. Zalaf, and W. A. Wakeham, Int. J. Thermophys. 9:21 (1988).

    Google Scholar 

  35. A. M. F. Palavra, W. A. Wakeham, and M. Zalaf, High Temp. High Press. 18:405 (1986).

    Google Scholar 

  36. A. J. Easteal and L. A. Woolf, Int. J. Thermophys. 8:71 (1987).

    Google Scholar 

  37. M. J. Assael, J. H. Dymond, S. Polimatidou, and E. Vogel, Int. J. Thermophys. 13:791 (1992).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Assael, M.J., Dymond, J.H. & Patterson, P.M. Correlation and prediction of dense fluid transport coefficients. V. Aromatic hydrocarbons. Int J Thermophys 13, 895–905 (1992). https://doi.org/10.1007/BF00503914

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00503914

Key words

Navigation