Skip to main content

Advertisement

Log in

Thermal-Conductivity Studies of Macro-porous Polymer-Derived SiOC Ceramics

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

A three-dimensional reticular macro-porous SiOC ceramics structure, made of spherical agglomerates, has been thermally characterized using a freestanding sensor-based \(3\omega \) method. The effective thermal conductivity of the macro-porous SiOC ceramics, including the effects of voids, is found to be \(0.041\,\hbox { W}\cdot \hbox { m}^{-1}\cdot \hbox { K}^{-1}\) to \(0.078\,\hbox { W}\cdot \hbox { m}^{-1}\cdot \hbox { K}^{-1}\) at room temperature, comparable with that of alumina aerogel or carbon aerogel. These results suggest that SiOC ceramics hold great promise as a thermal insulation material for use at high temperatures. The measured results further reveal that the effective thermal conductivity is limited by the low solid-phase volume fraction for the SiOC series processed at the same conditions. For SiOC ceramics processed under different pyrolysis temperatures, the contact condition between neighboring particles in the SiOC networks is another key factor influencing the effective thermal conductivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. P. Colombo, G. Mera, R. Riedel, G.D. Sorarù, J. Am. Ceram. Soc. 93, 1805 (2010)

    Google Scholar 

  2. R. Riedel, H.J. Kleebe, H. Schönfelder, F. Aldinger, Nature 374, 526 (1995)

    Article  ADS  Google Scholar 

  3. T. Ishikawa, Int. J. Appl. Ceram. Technol. 1, 49 (2004)

    Article  Google Scholar 

  4. R. Riedel, L. Toma, E. Janssen, J. Nuffer, T. Melz, H. Hanselka, J. Am. Ceram. Soc. 93, 920 (2010)

    Article  Google Scholar 

  5. H. Yang, P. Deschatelets, S.T. Brittain, G.M. Whitesides, Adv. Mater. 13, 54 (2001)

    Article  Google Scholar 

  6. Y. Liu, L.A. Liew, R. Luo, L. An, M.L. Dunn, V.M. Bright, J.W. Daily, R. Raj, Sens. Actuators, A: Phys. 95, 143 (2002)

    Google Scholar 

  7. L.A. Liew, R.A. Saravanan, V.M. Bright, M.L. Dunn, J.W. Daily, R. Raj, Sens. Actuators, A: Phys. 103, 171 (2003)

    Article  Google Scholar 

  8. R. Kolb, C. Fasel, V. Liebau-Kunzmann, R. Riedel, J. Eur. Ceram. Soc. 26, 3903 (2006)

    Article  Google Scholar 

  9. V. Liebau-Kunzmann, C. Fasel, R. Kolb, R. Riedel, J. Eur. Ceram. Soc. 26, 3897 (2006)

    Article  Google Scholar 

  10. M. Monthioux, O. Delverdier, J. Eur. Ceram. Soc. 16, 721 (1996)

    Article  Google Scholar 

  11. Y.F. Shi, Y. Wan, Y.P. Zhai, R.L. Liu, Y. Meng, B. Tu, D.Y. Zhao, Chem. Mater. 19, 1761 (2007)

    Google Scholar 

  12. A. Saha, R. Raj, D.L. Williamson, J. Am. Ceram. Soc. 89, 2188 (2006)

    Google Scholar 

  13. L. Miettinen, P. Kekäläinen, T. Turpeinen, J. Hyväluoma, J. Merikoski1, J. Timonen, AIP Adv. 2, 012101 (2012)

    Google Scholar 

  14. S.Q. Zeng, A. Hunt, R. Greif, J. Heat Transf. 117, 1055 (1995)

    Google Scholar 

  15. X. Fu, R. Viskanta, J.P. Gore, Int. Commun. Heat Mass Transf. 25, 151 (1998)

    Google Scholar 

  16. G.S. Wei, Y.S. Liu, X.X. Zhang, F. Yu, X.Z. Du, Int. J. Heat Mass Transf. 54, 2355 (2011)

    Google Scholar 

  17. F. Yu, G.S. Wei, X.X. Zhang, K. Chen, Int. J. Thermophys. 27, 293 (2006)

    ADS  Google Scholar 

  18. L.W. Hrubesh, R.W. Pekala, J. Mater. Res. 9, 731 (1994)

    ADS  Google Scholar 

  19. P.J. Burns, C.L. Tien, Int. J. Heat Mass Transf. 22, 929 (1979)

    ADS  Google Scholar 

  20. Q.R. Wu, Q.J. Wu, Y.B. Xu, in Proceedings 9th Asian Thermophys. Properties Conference, Paper No. 109027, Beijing, China, 19–22 Oct 2010

  21. G.D. Sorarù, D. Suttor, J. Sol-Gel Sci. Technol. 14, 69 (1999)

    Google Scholar 

  22. Y.D. Blum, D.B. Macqueen, H.J. Kleebe, J. Eur. Ceram. Soc. 25, 143 (2005)

    Google Scholar 

  23. J.S.Q. Zeng, R. Greif, P. Stevens, M. Ayers, A. Hunt, J. Mater. Res. 11, 687 (1996)

    ADS  Google Scholar 

  24. C.G. Pantano, A.K. Singh, H. Zhang, J. Sol-Gel Sci. Technol. 14, 7 (1999)

    Google Scholar 

  25. J. Latournerie, P. Dempsey, D. Hourlier-Bahloul, J.P. Bonnet, J. Am. Ceram. Soc. 89, 1485 (2006)

    Google Scholar 

  26. D.R. Bujalski, S. Grigoras, W.L. Lee, G.M. Wieber, G.A. Zank, J. Mater. Chem. 8, 1427 (1998)

    Google Scholar 

  27. A.M. Wilson, G. Zank, K. Eguchi, W. Xing, B. Yates, J.R. Dahn, Chem. Mater. 9, 1601 (1997)

    Google Scholar 

  28. S.Q. Zeng, A. Hunt, R. Greif, J. Non-Cryst. Solids 186, 264 (1995)

    ADS  Google Scholar 

  29. L. Qiu, D.W. Tang, X.H. Zheng, G.P. Su, Rev. Sci. Instrum. 82, 045106 (2011)

    Google Scholar 

  30. L. Qiu, X.H. Zheng, G.P. Su, D.W. Tang, Int. J. Thermophys. (2011). doi:10.1007/s10765-011-1075-y

  31. S.R. Choi, D. Kim, S.H. Choa, S.H. Lee, J.K. Kim, Int. J. Thermophys. 27, 896 (2006)

    ADS  Google Scholar 

  32. G.V. Samsonov, in The Oxide Handbook (Plenum, New York, 1973), p. 122

  33. K. Kinoshita, in Carbon-Electrochemical and Physicochemical Properties (Wiley, New York, 1988), p. 12

Download references

Acknowledgments

The authors acknowledge financial support from National Basic Research Program of China (Grant No. 2012CB933200) and Projects 51306183 and 51106151 supported by National Natural Science Foundation of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. H. Zheng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qiu, L., Li, Y.M., Zheng, X.H. et al. Thermal-Conductivity Studies of Macro-porous Polymer-Derived SiOC Ceramics. Int J Thermophys 35, 76–89 (2014). https://doi.org/10.1007/s10765-013-1542-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10765-013-1542-8

Keywords

Navigation