Skip to main content

Advertisement

Log in

Effects of Dietary Fiber on Gut Retention Time in Captive Macaca cyclopis, Macaca fascicularis, Hylobates lar, and Pongo pygmaeus and the Germination of Ingested Seeds

  • Published:
International Journal of Primatology Aims and scope Submit manuscript

Abstract

Gut retention time (GRT), defined as the time needed for seeds to pass the digestive tracts of consumers, can affect the germination rates of ingested seeds. GRT can vary with the amount of dietary fiber consumed by primates. We investigated how dietary fiber affects GRT in captive individuals of four hindgut-fermenting primate species: macaques (Macaca cyclopis and Macaca fascicularis), gibbons (Hylobates lar), and orangutans (Pongo pygmaeus). We used Hylocereus undatus seeds as markers to measure GRT in each species when fed high- (18–22%) and low- (14–16%) fiber diets. We also examined the effect of GRT on seed germination in Ficus septica and Trema orientalis (germination time: mean ± SE = 10.4 ± 0.3, 86.9 ± 2.5 days, respectively) by comparing these seeds with the pulp removed, as a control. We found that GRT was longer when gibbons and orangutans fed on a high-fiber diet than on a low-fiber diet, but this was not the case for macaques. The percentage germination of ingested F. septica seeds was lower and germination time was longer than the control. T. orientalis seeds were less likely to germinate than control seeds were but did so more quickly if they did germinate after passing through M. cyclopis and P. pygmaeus. GRT decreased the germination rate of seeds of F. septica, but not seeds of T. orientalis. Together our results suggest that the effect of dietary fiber on GRT differs among primate species, and that the effect of such differences in GRT varies with the seed species they swallow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Agami, M., & Waisel, Y. (1988). The role of fish in distribution and germination of seeds of the submerged macrophytes Najas marina L. and Ruppia maritima L. Oecologia, 76, 83–88.

    Article  Google Scholar 

  • Ariffin, A. A., Bakar, J., Tan, C. P., Rahman, R. A., Karim, R., & Loi, C. C. (2009). Essential fatty acids of pitaya (dragon fruit) seed oil. Food Chemistry, 114, 561–564.

    Article  CAS  Google Scholar 

  • Barnea, A., Yomtov, Y., & Friedman, J. (1990). Differential germination of 2 closely related species of solanum in response to bird ingestion. Oikos, 57, 222–228.

    Article  Google Scholar 

  • Barnea, A., Yomtov, Y., & Friedman, J. (1991). Does ingestion by birds affect seed-germination? Functional Ecology, 5, 394–402.

    Article  Google Scholar 

  • Beubler, E., & Juan, H. (1979). Effect of ricinoleic acid and other laxatives on net water flux and prostaglandin E release by the rat colon. Journal of Pharmacy and Pharmacology, 31, 681–685.

    Article  CAS  PubMed  Google Scholar 

  • Campbell, J. L., Williams, C. V., & Eisemann, J. H. (2004). Use of total dietary fiber across four lemur species (Propithecus verreauxi coquereli, Hapalemur griseus griseus, Varecia variegata, and Eulemur fulvus): does fiber type affect digestive efficiency? American Journal of Primatology, 64, 323–335.

    Article  CAS  PubMed  Google Scholar 

  • Caton, J. M., Hume, I. D., Hill, D. M., & Harper, P. (1999). Digesta retention in the gastro-intestinal tract of the orangutan (Pongo pygmaeus). Primates, 40, 551–558.

    Article  Google Scholar 

  • Chapman, C. A. (1995). Primate seed dispersal: coevolution and conservation implications. Evolutionary Anthropology, 4, 74–82.

    Article  Google Scholar 

  • Charalambidou, I., Santamaria, L., & Langevoord, O. (2003). Effect of ingestion by five avian dispersers on the retention time, retrieval and germination of Ruppia maritima seeds. Functional Ecology, 17, 747–753.

    Article  Google Scholar 

  • Chen, C.E., & Lee, L.L. (1999). The influence of formosan macaques (Macaca cyclopis) on seed dispersal in Fushan experimental forest. Master’s thesis, National Taiwan University, Taipei, Taiwan (in Chinese with English abstract).

  • Chivers, D. J., & Langer, P. (1994). The digestive system in mammals: Food form and function. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Cooke, J., Cooke, B., & Gifford, D. (2002). Loblolly pine seed dormancy: constraints to germination. New Forests, 23, 239–256.

    Article  Google Scholar 

  • Figuerola, J., Charalambidou, I. L., Santamaria, L., & Green, A. J. (2010). Internal dispersal of seeds by waterfowl: effect of seed size on gut passage time and germination patterns. Naturwissenschaften, 97, 555–565.

    Article  CAS  PubMed  Google Scholar 

  • Fraga, M. J., Perez de Ayala, P., Carabano, R., & de Blas, J. C. (1991). Effect of type of fiber on the rate of passage and on the contribution of soft feces to nutrient intake of soft feces to nutrient intake of sinighing rabbits. Journal of Animal Science, 69, 1566–1574.

    Article  CAS  PubMed  Google Scholar 

  • Fuzessy, L. F., Cornelissen, T. G., Janson, C., & Silveira, F. A. O. (2016). How do primates affect seed germination? A meta-analysis of gut passage effects on neotropical plants. Oikos. doi:10.1111/oik.02986.

    Google Scholar 

  • Gardener, C. J., McIvor, J. G., & Jansen, A. (1993). Passage of legume and grass seeds through the digestive-tract of cattle and their survival in faeces. Journal of Applied Ecology, 30, 63–74.

    Article  Google Scholar 

  • Gittins, S. P. (1982). Feeding and ranging in the agile gibbon. Folia Primatologica, 38, 39–71.

    Article  CAS  Google Scholar 

  • Hackstein, J. H. P., & Theo, A. V. A. (1996). Fecal methanogens and vertebrate evolution. Evolution, 50, 559–572.

    Article  Google Scholar 

  • Izhaki, I., & Safriel, U. N. (1990). The effect of some mediterranean scrubland frugivores upon germination patterns. Journal of Ecology, 78, 56–65.

    Article  Google Scholar 

  • Jaman, M. F., Huffman, M. A., & Takemoto, H. (2010). The foraging behavior of Japanese macaques Macaca fuscata in a forested enclosure: effects of nutrient composition, energy and its seasonal variation on the consumption of natural plant foods. Current Zoology, 56, 198–208.

    CAS  Google Scholar 

  • Kay, R. N. B., & Davies, A. G. (1994). Digestive physiology. In G. Davies & J. Oates (Eds.), Colobine monkeys: Their ecology, behaviour and evolution (pp. 229–250). Cambridge: Cambridge University Press.

    Google Scholar 

  • Kisidayová, S., Váradyová, Z., Pristas, P., Piknová, M., Nigutová, K., et al. (2009). Effects of high- and low-fiber diets on fecal fermentation and fecal microbial populations of captive chimpanzees. American Journal of Primatology, 71, 548–557.

    Article  PubMed  Google Scholar 

  • Knott, C. D. (1999). Reproductive, physiological and behavioral responses of orangutans in Borneo to fluctuations in food availability. Cambridge: Harvard University.

    Google Scholar 

  • Krefting, L. W., & Roe, E. I. (1949). The role of some birds and mammals in seed germination. Ecological Monographs, 19, 271–286.

    Article  Google Scholar 

  • Lambert, J. E., & Fellner, V. (2012). In vitro fermentation of dietary carbohydrates consumed by African apes and monkeys: preliminary results for interpreting microbial and digestive strategy. International Journal of Primatology, 33, 263–281.

    Article  Google Scholar 

  • Ley, R. E., Hamady, M., Lozupone, C., Turnbaugh, P. J., Ramey, R. R., et al. (2008). Evolution of mammals and their gut microbes. Science, 320, 1647–1651.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Linnebjerg, J. F., Hansen, D. M., & Olesen, J. M. (2009). Gut passage effect of the introduced red-whiskered bulbul (Pycnonotus jocosus) on germination of invasive plant species in Mauritius. Austral Ecology, 34, 272–277.

    Article  Google Scholar 

  • Lisci, M., & Pacini, E. (1994). Germination ecology of drupelets of the fig (Ficus carica L.). Botanical Journal of the Linnean Society, 114, 133–146.

    Article  Google Scholar 

  • Logan, D. P., & Xu, X. (2006). Germination of kiwi fruit, Actinidia chinensis, after passage through Silvereyes, Zosterops lateralis. New Zealand Journal of Ecology, 30, 407–411.

    Google Scholar 

  • McKey, D. (1989). Population biology of figs: applications for conservation. Experientia, 45, 661–673.

    Article  Google Scholar 

  • Milton, K., & Demment, M. W. (1988). Digestion and passage kinetics of chimpanzees fed high- and low-fiber diets and comparison with human data. Journal of Nutrition, 118, 1082–1088.

    CAS  PubMed  Google Scholar 

  • Munir, J., Dorn, L. A., Donohue, K., & Schmitt, J. (2001). The effect of maternal photoperiod on seasonal dormancy in Arabidopsis thaliana (Brassicaceae). American Journal of Botany, 88, 1240–1249.

    Article  CAS  PubMed  Google Scholar 

  • Nakamura, N. (2010). Comparative analysis of primate hydrogenotrophic microbiota. Doctoral dissertation, University of Illinois at Urbana-Champaign.

  • Nason, J. D., Herre, E. A., & Hamrick, J. L. (1998). The breeding structure of a tropical keystone plant resource. Nature, 391, 685–687.

    Article  CAS  Google Scholar 

  • Righini, N., Serio-Silva, J. C., Rico-Gray, V., & Martinez-Mota, R. (2004). Effect of different primate species on germination of Ficus (Urostigma) seeds. Zoo Biology, 23, 273–278.

    Article  Google Scholar 

  • Robbins, C. T. (1983). Wildlife feeding and nutrition. San Diego: Academic.

    Google Scholar 

  • Robertson, A. W., Trass, A., Ladley, J. J., & Kelly, D. (2006). Assessing the benefits of frugivory for seed germination: the importance of the deinhibition effect. Functional Ecology, 20, 58–66.

    Article  Google Scholar 

  • Rodrigues, C. R., & Rodrigues, B. F. (2014). Enhancement of seed germination in Trema orientalis (L.) Blume-potential plant species in revegetation of mine wastelands. Journal of Sustainable Forestry, 33, 46–58.

    Article  Google Scholar 

  • Sakaguchi, E., Suzuki, K., Kotera, S., & Ehara, A. (1991). Fiber digestion and digesta retention time in macaque and colobus monkeys. In Primatology today: Proceedings of the 13th Congress of the International Primate Society (pp. 671–674). Amsterdam: Elsevier.

  • Sawada, A., Sakaguchi, E., & Hanya, G. (2011). Digesta passage time, digestibility, and total gut fill in captive Japanese macaques (Macaca fuscata): effects of food type and food intake level. International Journal of Primatology, 32, 390–405.

    Article  Google Scholar 

  • Schmidt, D. A., Kerley, M. S., Dempsey, J. L., Porton, I. J., Porter, J. H., et al. (2005). Fiber digestibility by the orangutan (Pongo abelii): in vitro and in vivo. Journal of Zoo and Wildlife Medicine, 36, 571–580.

    Article  PubMed  Google Scholar 

  • Simon, D., Kapis, M. S., James, D. D., Joseph, W., Lee, N. H., & Goniur, O. (2012). Food plants of orang-utan in Bukit Piton forest of Ulu Segama Malua forest reserve. Sabah, Malaysia: WWF (panda.org).

    Google Scholar 

  • Stevens, C. E., & Hume, I. D. (1995). Comparative physiology of the vertebrate digestive system. Cambridge: Cambridge University Press.

    Google Scholar 

  • Stevenson, P. R., Castellanos, M. C., Pizarro, J. C., & Garavito, M. (2002). Effects of seed dispersal by three ateline monkey species on seed germination at Tinigua National Park, Colombia. International Journal of Primatology, 23, 1187–1204.

    Article  Google Scholar 

  • Stevenson, P. R., & García, C. (2003). Modelos para predecir las distancias de dispersión de semillas por micos churucos (Lagothrix lagothricha): Aportes de estudios en campo y en cautiverio. Universitas Scientiarum, 8, 13–22.

    Google Scholar 

  • Stevenson, P. R., Link, A., Onshuus, A., Quiroz, A. J., & Velasco, M. (2014). Estimation of seed shadows generated by Andean woolly monkeys (Lagothrix lagotricha lugens). International Journal of Primatology, 35, 1021–1036.

    Article  Google Scholar 

  • Sung, F., & Wu, H. (2005). Fig consumption by birds and mammals of three Ficus species in a karst forest in Kenting, Southern Taiwan. Master’s thesis, National Dong Hwa University, Hualien, Taiwan (in Chinese with English abstract).

  • Traveset, A. (1998). Effect of seed passage through vertebrate frugivores’ guts on germination: a review. Perspectives in Plant Ecology, Evolution and Systematics, 1, 151–190.

    Article  Google Scholar 

  • Traveset, A., Riera, N., & Mas, R. E. (2001). Passage through bird guts causes interspecific differences in seed germination characteristics. Functional Ecology, 15, 669–675.

    Article  Google Scholar 

  • Ungar, S. P. (1995). Fruit preference of four sympatric primate species at Ketambe, northern Sumatra, Indonesia. International Journal of Primatology, 16, 221–245.

    Article  Google Scholar 

  • van Soest, P. J. (1994). Nutritional ecology of the ruminant. Ithaca: Cornell University Press.

    Google Scholar 

  • Vogel, E. R., Haag, L., Mitra-Setia, T., van Schaik, C. P., & Dominy, N. J. (2009). Foraging and ranging behavior during a fallback episode: Hylobates albibarbis and Pongo pygmaeus wurmbii compared. American Journal of Physical Anthropology, 140, 716–726.

    Article  PubMed  Google Scholar 

  • Wang, Z.-j., Cao, M., Li, G.-F., Men, L., Duo, G., et al. (2002). Trema orientalis seeds dispersed by birds and its ecological role. Zoological Research, 23, 214–219. in Chinese with English abstract.

    Google Scholar 

  • Warner, A. C. I. (1981). Rate of passage of digesta through the gut of mammals and birds. Nutrition Abstracts and Reviews, Series B, 51, 789–820.

    Google Scholar 

  • Yagihashi, T., Hayashida, M., & Miyamoto, T. (1998). Effects of bird ingestion on seed germination of Sorbus commixta. Oecologia, 114, 209–212.

    Article  Google Scholar 

  • Yumoto, T., Noma, N., & Maruhashi, T. (1998). Cheek-pouch dispersal of seeds by Japanese monkeys (Macaca fuscata yakui) on Yakushima Island, Japan. Primates, 39, 325–338.

    Article  Google Scholar 

  • Zalamea, P. C., Sarmiento, C., Arnold, A. E., Davis, A. S., & Dalling, J. W. (2014). Do soil microbes and abrasion by soil particles influence persistence and loss of physical dormancy in seeds of tropical pioneers? Frontiers in Plant Science, 5, 1–14.

    Google Scholar 

Download references

Acknowledgments

We are grateful to the editor-in-chief Dr. Joanna Setchell and two anonymous reviewers for providing valuable comments and suggestions on the manuscript. The time and effort they contributed to help improve the manuscript are much appreciated. We thank the research teams of L-L. Lee and H-H. Su for their support in preparation and execution of this study. We also thank the keepers at the PTRC for their assistance with the experiment. We appreciate the assistance in statistics from Drs. Yao-Sung Lin and Guo-Jing Weng, and information on seed germination from Dr. Ching-Te Chien.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hsiu-Hui Su or Ling-Ling Lee.

Additional information

Handling Editor: Joanna M. Setchell

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, NC., Su, HH. & Lee, LL. Effects of Dietary Fiber on Gut Retention Time in Captive Macaca cyclopis, Macaca fascicularis, Hylobates lar, and Pongo pygmaeus and the Germination of Ingested Seeds. Int J Primatol 37, 671–687 (2016). https://doi.org/10.1007/s10764-016-9931-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10764-016-9931-z

Keywords

Navigation