Skip to main content
Log in

The Behavioral Ecology of Color Vision: Considering Fruit Conspicuity, Detection Distance and Dietary Importance

  • Published:
International Journal of Primatology Aims and scope Submit manuscript

Abstract

Primate color vision is well suited for investigating the genetic basis of foraging behavior owing to a clear genotype–phenotype linkage. Finding fruits amid tropical foliage has long been proffered as an adaptive explanation for primate trichromacy, yet there is a dearth of systematic evaluations of frugivory as an ecological selective force. We studied the behavioral ecology of wild capuchins (Cebus capucinus) in northwestern Costa Rica across the annual cycle and modeled the ability of three dichromatic and three trichromatic phenotypes to discriminate fruits from leaves, a task that represents long-distance search for food patches in a tropical forest. Models of the trichromatic phenotypes could correctly discriminate approximately three-quarters of the total capuchin dietary fruits from leaves, including some fruits subjectively classified as having “cryptic” (greenish-brownish) hues. In contrast, models of dichromatic phenotypes could discriminate fewer than one-third of the fruits. This pattern held when we restricted our analysis to only the most heavily consumed diet items, preferred foods, or seasonally critical species. We in addition highlight the potential of fruit species with small patch sizes to confer an advantage to trichromats, as these resources are anticipated to provide a high finder’s reward. Our results are consistent with the hypothesis that long-distance detection of fruit patches exerts a selective pressure on trichromacy in neotropical primates, and suggest that greenish-brownish fruits might have played an underappreciated role in the evolution of primate color vision.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Allen, G. (1879). The color sense: its origins and development. London: Trubner & Co.

    Google Scholar 

  • Araújo, M., Lima, E. M., & Pessoa, V. (2006). Modeling dichromatic and trichromatic sensitivity to the color properties of fruits eaten by squirrel monkeys (Saimiri sciureus). American Journal of Primatology, 68, 1129–1137.

    Article  PubMed  Google Scholar 

  • Bompas, A., Kendall, G., & Sumner, P. (2013). Spotting fruit versus picking fruit as the selective advantage of human colour vision. i-Perception, 4, 84–94.

    Article  PubMed Central  PubMed  Google Scholar 

  • Bradley, B. J., & Lawler, R. R. (2011). Linking genotypes, phenotypes, and fitness in wild primate populations. Evolutionary Anthropology: Issues, News, and Reviews, 20, 104–119.

    Article  Google Scholar 

  • Bunce, J. A., Isbell, L. A., Grote, M., & Jacobs, G. H. (2011). Color vision variation and foraging behavior in wild neotropical titi monkeys (Callicebus brunneus): Possible mediating roles for spatial memory and reproductive status. International Journal of Primatology, 32, 1058–1075.

    Article  Google Scholar 

  • Caine, n. G. (2002). Seeing red: consequences of individual differences in color vision in callitrichid primates. In L. E. Millor (Ed.), Eat or be eaten (pp. 58–73). Cambridge: Cambridge University Press.

    Google Scholar 

  • Caine, n. G., & Mundy, n. I. (2000). Demonstration of a foraging advantage for trichromatic marmosets (Callithrix geoffroyi) dependant on food colour. Proceedings of the Royal Society of London B: Biological Sciences, 267, 439–444.

    Article  CAS  Google Scholar 

  • Chang, C-C., & Lin, C-J. (2011). LIBSVM: a library for support vector machines. ACM Transactions on Intelligent Systems and Technology.

  • Changizi, M. A., Zhang, Q., & Shimojo, S. (2006). Bare skin, blood and the evolution of primate colour vision. Biology Letters, 2, 217–221.

    Article  PubMed Central  PubMed  Google Scholar 

  • Chapman, C., & Fedigan, L. (1990). Dietary differences between neighbouring Cebus capucinus groups: local traditions, food availability or responses to food profitability? Folia Primatologica, 54, 177–186.

    Article  CAS  Google Scholar 

  • Chapman, C. A., Chapman, L. J., Wrangham, R., Hunt, K., Gebo, D., & Gardner, L. (1992). Estimators of fruit abundance of tropical trees. Biotropica, 24, 527–531.

    Article  Google Scholar 

  • Corlett, R. T. (2011). How to be a frugivore (in a changing world). Acta Oecologica

  • Coss, R. G., & Ramakrishnan, U. (2000). Perceptual aspects of leopard recognition by wild bonnet macaques (Macaca radiata). Behavior, 137, 315–335.

    Article  Google Scholar 

  • Cropp, S., Boinski, S., & Li, W. H. (2002). Allelic variation in the squirrel monkey x-linked color vision gene: biogeographical and behavioral correlates. Journal of Molecular Evolution, 54, 734–745.

    Article  CAS  PubMed  Google Scholar 

  • Cunningham, E., & Janson, C. (2007). Integrating information about location and value of resources by white-faced saki monkeys (Pithecia pithecia). Animal Cognition, 10, 293–304.

    Article  PubMed  Google Scholar 

  • Deeb, S., Lindsey, D., Hibiya, Y., Sanocki, E., Winderickx, J., Teller, D., & Motulsky, A. (1992). Genotype-phenotype relationships in human red/green color-vision defects: molecular and psychophysical studies. American Journal of Human Genetics, 51, 687–700.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Di Bitetti, M., & Janson, C. (2001). Social foraging and the finder's share in capuchin monkeys. Animal Behaviour, 62, 47–56.

    Article  Google Scholar 

  • Dominy, n. J. (2004). Fruits, fingers and fermentation: the sensory cues available to foraging primates. Integrative and Comparative Biology, 44, 295–303.

    Article  PubMed  Google Scholar 

  • Dominy, n. J., Garber, P. A., Bicca-Marques, J. C., Bicca-Marques, J. C., & de Azevedo-Lopes, M. A. (2003a). Do female tamarins use visual cues to detect fruit rewards more successfully than do males? Animal Behaviour, 66, 829–837.

    Article  Google Scholar 

  • Dominy, n. J., & Lucas, P. W. (2001). Ecological importance of trichromatic vision to primates. Nature, 410, 363–366.

    Article  CAS  PubMed  Google Scholar 

  • Dominy, n. J., Lucas, P. W., Osorio, D., & Yamashita, N. (2001). The sensory ecology of primate food perception. Evolutionary Anthropology, 10, 171–186.

    Article  Google Scholar 

  • Dominy, n. J., Svenning, J.-C., & Li, W.-H. (2003b). Historical contingency in the evolution of primate color vision. Journal of Human Evolution, 44, 25–45.

    Article  PubMed  Google Scholar 

  • Fedigan, L., Melin, A., Addicott, J., & Kawamura, S. (In Press). Color vision and fitness variation in wild neotropical monkeys. Implications for the heterozygote superiority hypothesis. PloS One.

  • Fedigan, L. M., & Jack, K. M. (2011). Two girls for every boy: the effects of group size andcomposition on the reproductive success of male and female white-faced capuchins. American Journal of Physical Anthropology, 317–326.

  • Fragaszy, D., Visalberghi, E., & Fedigan, L. M. (2004). The complete capuchin: the biology of the genus Cebus. Cambridge: Cambridge University Press.

    Google Scholar 

  • Garber, P. A. (2000). Evidence for the use of spatial, temporal and social information by some primate foragers. In S. Boinski & P. A. Garber (Eds.), On the move: how and why animals travel in groups. Chicago: University of Chicago Press.

    Google Scholar 

  • Gaulin, S. J. C., & Konner, M. J. (1977). On the natural diets of primates, including humans. In R. J. Wurtman & J. J. Wurtman (Eds.), Nutrition and the brain (pp. 1–86). New York: Raven Press.

    Google Scholar 

  • Gautier-Hion, A., Duplantier, J.-M., Quris, F. F., Sourd, C., Decoux, J.-P., Dubost, G., Emmons, L., Ererd, C., Hecketsweiler, P., Moungazi, A., et al. (1985). Fruit characters as a basis of fruit choice and seed dispersal in a tropical forest vertebrate community. Oecologia, 65, 324–337.

    Article  Google Scholar 

  • Harrison, M. E., & Marshall, A. J. (2011). Strategies for the use of fallback foods in apes. International Journal of Primatology, 32, 531–565.

    Article  PubMed Central  PubMed  Google Scholar 

  • Hiramatsu, C., Melin, A. D., Aureli, F., Schaffner, C. M., Vorobyev, M., & Kawamura, S. (2009). Interplay of olfaction and vision in fruit foraging of spider monkeys. Animal Behaviour, 1421–1426.

  • Hiramatsu, C., Melin, A. D., Aureli, F., Schaffner, C. M., Vorobyev, M., Matsumoto, Y., & Kawamura, S. (2008). Importance of achromatic contrast in short-range fruit foraging of primates. PloS One, 3, 1–12.

    Article  Google Scholar 

  • Hiramatsu, C., Radlwimmer, F. B., Yokoyama, S., & Kawamura, S. (2004). Mutagenesis and reconstitution of middle-to-long-wave-sensitive visual pigments of new world monkeys for testing the tuning effect of residues at sites 229 and 233. Vision Research, 44, 2225–2231.

    Article  PubMed  Google Scholar 

  • Hiramatsu, C., Tsutsui, T., Matsumoto, Y., Aureli, F., Fedigan, L. M., & Kawamura, S. (2005). Color vision polymorphism in wild capuchins (Cebus capucinus) and spider monkeys (Ateles geoffroyi) in Costa Rica. American Journal of Primatology, 67, 447–461.

    Article  CAS  PubMed  Google Scholar 

  • Hiwatashi, T., Okabe, Y., Tsutsui, T., Hiramatsu, C., Melin, A. D., Oota, H., Schaffner, C. M., Aureli, F., Fedigan, L. M., Innan, H., et al. (2010). An explicit signature of balancing selection for color-vision variation in new world monkeys. Molecular Biology and Evolution, 27, 453–464.

    Article  CAS  PubMed  Google Scholar 

  • Isbell, L. A. (2009). The fruit, the tree and the serpent: why we see so well. Boston: Harvard University Press.

    Google Scholar 

  • Jacobs, G. H. (2009). Evolution of colour vision in mammals. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 364, 2957–2967.

    Article  CAS  PubMed  Google Scholar 

  • Jacobs, G. H. (2010). The verriest lecture 2009: recent progress in understanding mammalian color vision. Ophthalmic and Physiological Optics, 30, 422–434.

    Article  PubMed  Google Scholar 

  • Jacobs, G. H., & Deegan, J. F., 2nd. (2003). Cone pigment variations in four genera of new world monkeys. Vision Research, 43, 227–236.

    Article  PubMed  Google Scholar 

  • Janson, C. (1983). Adaptation of fruit morphology to dispersal agents in a neotropical forest. Science, 219, 187–189.

    Article  CAS  PubMed  Google Scholar 

  • Janson, C. (1998). Experimental evidence for spatial memory in foraging wild capuchin monkeys, Cebus apella. Animal Behaviour, 55, 1229–1243.

    Article  PubMed  Google Scholar 

  • Janson, C. H., & Di Bitetti, M. S. (1997). Experimental analysis of food detection in capuchin monkeys: effects of distance, travel speed, and resource size. Behavioural Ecology and Sociobiology, 41, 17–24.

    Article  Google Scholar 

  • Kamilar, J. M., Heesy, C. P., & Bradley, B. J. (2012). Did trichromatic color vision and red hair color coevolve in primates? American Journal of Primatology.

  • Kawamura, S., Hiramatsu, C., Melin, A. D., Schaffner, C. M., Aureli, F., & Fedigan, L. M. (2012). Polymorphic color vision in primates: evolutionary considerations. In H. Hirai, H. Imai, & Y. Go (Eds.), Post genome biology of primates (pp. 93–120). Tokyo: Springer Science+Business Media.

    Chapter  Google Scholar 

  • Kays, R. W. (1999). Food preferences of kinkajous (Potus flavus): a frugivorous carnivore. Journal of Mammalogy, 80, 589–599.

    Article  Google Scholar 

  • Lambert, J. E. (2009). Primate fallback strategies as adaptive phenotypic plasticity: scale, pattern, and process. American Journal of Physical Anthropology, 140, 759–766.

    Article  PubMed  Google Scholar 

  • Leighton, M. (1993). Modeling dietary selectivity by bornean orangutans: evidence for integration of multiple criteria in fruit selection. International Journal of Primatology, 14, 257–313.

    Article  Google Scholar 

  • Lomascolo, S., & Schaefer, H. M. (2010). Signal convergence in fruits: a result of selection by frugivores? Journal of Evolutionary Biology, 23, 614–624.

    Article  CAS  PubMed  Google Scholar 

  • Lucas, P. W., Dominy, N. J., Riba-Hernandez, P., Stoner, K., Yamashita, N., Loria-Calderon, E., Peterson-Pereira, W., Rojas-Duran, Y., Salas-Pena, R., Solis-Madrigal, S., et al. (2003). Evolution and function of routine trichromatic vision in primates. Evolution, 57, 2636–2643.

    PubMed  Google Scholar 

  • Marshall, A., Boyko, C. M., Feilen, K. L., Boyko, R. H., & Leighton, M. (2009). Defining fallback foods and assessing their importance in primate ecology and evolution. American Journal of Physical Anthropology, 140, 603–614.

    Article  PubMed  Google Scholar 

  • Marshall, A., & Wrangham, R. (2007). Evolutionary consequences of fallback foods. International Journal of Primatology, 28, 1219–1235.

    Article  Google Scholar 

  • McCabe, G. M., & Fedigan, L. M. (2007). Effects of reproductive status on energy intake, ingestion rates and dietary composition of female Cebus capucinus at Santa Rosa, Costa Rica. International Journal of Primatology, 28, 837–851.

    Article  Google Scholar 

  • McConkey, K. R., Ario, A., Aldy, F., & Chivers, D. J. (2003). Influence of forest seasonality on gibbon food choice in the rain forests of Barito Ulu, Central Kalimantan. International Journal of Primatology, 24, 19–32.

    Article  Google Scholar 

  • Melin, A., Fedigan, L., Hiramatsu, C., Sendall, C., & Kawamura, S. (2007). Effects of colour vision phenotype on insect capture by a free-ranging population of white-faced capuchins (Cebus capucinus). Animal Behaviour, 73, 205–214.

    Article  Google Scholar 

  • Melin, A. D., Fedigan, L. M., Hiramatsu, C., Hiwatashi, T., Parr, N., & Kawamura, S. (2009). Fig foraging by dichromatic and trichromatic Cebus capucinus in a tropical dry forest. International Journal of Primatology, 30, 753–775.

    Article  Google Scholar 

  • Melin, A. D., Fedigan, L. M., Hiramatsu, C., & Kawamura, S. (2008). Polymorphic color vision in white-faced capuchins (Cebus capucinus): is there foraging niche divergence among phenotypes? Behavioral Ecology and Sociobiology, 62, 659–670.

    Article  Google Scholar 

  • Melin, A. D., Fedigan, L. M., Young, H. C., & Kawamura, S. (2010). Can color vision variation explain sex differences in invertebrate foraging by capuchin monkeys? Current Zoology, 56, 300–312.

    Google Scholar 

  • Melin, A. D., Hiramatsu, C., Fedigan, L. M., Schaffner, C., Aureli, F., & Kawamura, S. (2012). Polymorphism and adaptation of primate colour vision. In P. Pontarotti (Ed.), Evolutionary biology: mechanisms and trends (pp. 225–241). Berlin and Heidelberg: Springer Science + Business Media.

    Chapter  Google Scholar 

  • Melin, A. D., Kline, D. W., Hickey, C., & Fedigan, L. M. (2013a). Food search through the eyes of a monkey: a functional substitution approach for assessing the ecology of primate color vision. Vision Research, 86, 87–96.

    Article  CAS  PubMed  Google Scholar 

  • Melin, A. D., Young, H. C., Mosdossy, K., & Fedigan, L. (In Press). Seasonality, extractive foraging and the evolution of primate sensorimotor intelligence. Journal of Human Evolution.

  • Mollon, J. D. (1989). “Tho’ she kneel’d in that place where they grew…” The uses and origins of primate color vision. Journal of Experimental Biology, 146, 21–38.

    CAS  PubMed  Google Scholar 

  • Mollon, J. D., Bowmaker, J. K., & Jacobs, G. H. (1984). Variations of color vision in a new world primate can be explained by polymorphism of retinal photopigments. Proceedings of the Royal Society of London B: Biological Sciences, 222, 373–399.

    Article  CAS  PubMed  Google Scholar 

  • Oluput, W., Waser, P. M., & Chapman, C. (1998). Fruit finding by mangabeys (Lophocebus albigena): are monitoring of fig trees and use of sympatric frugivore calls possible strategies. International Journal of Primatology, 19, 339–353.

    Article  Google Scholar 

  • Osorio, D., Smith, A. C., Vorobyev, M., & Buchanan-Smith, H. M. (2004). Detection of fruit and the selection of primate visual pigments for color vision. American Naturalist, 164, 696–708.

    Article  Google Scholar 

  • Osorio, D., & Vorobyev, M. (1996). Colour vision as an adaptation to frugivory in primates. Proceedings of the Royal Society of London B: Biological Sciences, 263, 593–599.

    Article  CAS  Google Scholar 

  • Parr, N. A., Melin, A. D., & Fedigan, L. M. (2011). Figs are more than fallback foods: the relationship between Ficus and Cebus in a tropical dry forest. International Journal of Zoology, 2011, 1–10.

    Article  Google Scholar 

  • Parraga, C. A., Troscianko, T., & Tolhurst, D. J. (2002). Spatiochromatic properties of natural images and human vision. Current Biology, 12, 483–487.

    Article  CAS  PubMed  Google Scholar 

  • Perini, E. S., Pessoa, V. F., & Pessoa, D. (2009). Detection of fruit by the cerrado’s marmoset (Callithrix penicillata): modeling color signals for different background scenarios and ambient light intensities. Journal of Experimental Zoology Part A: Ecological Genetics and Physiology, 311A, 289–302.

    Article  Google Scholar 

  • Pessoa, D. M., Cunha, J. F., Tomaz, C., & Pessoa, V. F. (2005a). Colour discrimination in the black-tufted-ear marmoset (Callithrix penicillata): ecological implications. Folia Primatologica (Basel), 76, 125–134.

    Article  Google Scholar 

  • Pessoa, D. M., Tomaz, C., & Pessoa, V. F. (2005b). Color vision in marmosets and tamarins: behavioural evidence. American Journal of Primatology, 67, 487–495.

    Article  PubMed  Google Scholar 

  • Polyak, S. (1957). The vertebrate visual system. Chicago: The University of Chicago Press.

    Google Scholar 

  • Regan, B. C., Julliot, C., Simmen, B., Vienot, F., Charles-Dominique, P., & Mollon, J. D. (1998). Frugivory and colour vision in Alouatta seniculus, a trichromatic platyrrhine monkey. Vision Research, 38, 3321–3327.

    Article  CAS  PubMed  Google Scholar 

  • Regan, B. C., Julliot, C., Simmen, B., Vienot, F., Charles-Dominique, P., & Mollon, J. D. (2001). Fruits, foliage and the evolution of primate colour vision. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 356, 229–283.

    Article  CAS  PubMed  Google Scholar 

  • Riba-Hernandez, P., Stoner, K. E., & Osorio, D. (2004). Effect of polymorphic colour vision for fruit detection in the spider monkey Ateles geoffroyi, and its implications for the maintenance of polymorphic colour vision in platyrrhine monkeys. Journal of Experimental Biology, 207, 2465–2470.

    Article  PubMed  Google Scholar 

  • Rose, L. M. (1994). Sex differences in diet and foraging behaviour in white-faced capuchins (Cebus capucinus). International Journal of Primatology, 15, 95–114.

    Article  Google Scholar 

  • Rowe, M. P., & Jacobs, G. H. (2004). Cone pigment polymorphism in new world monkeys: are all pigments created equal? Visual Neuroscience, 21, 217–222.

    Article  PubMed  Google Scholar 

  • Rowe, M. P., & Jacobs, G. H. (2007). Naturalistic color discriminations in polymorphic platyrrhine monkeys: effects of stimulus luminance and duration examined with functional substitution. Visual Neuroscience, 24, 17–23.

    Article  PubMed  Google Scholar 

  • Saito, A., Kawamura, S., Mikami, A., Ueno, Y., Hiramatsu, C., Koida, K., Fujita, K., Kuroshima, H., & Hasegawa, T. (2005). Demonstration of a genotype-phenotype correlation in the polymorphic color vision of a non-callitrichine new world monkey, capuchin (Cebus apella). American Journal of Primatology, 67, 471–485.

    Article  CAS  PubMed  Google Scholar 

  • Simmen, B., & Sabatier, D. (1996). Diets of some French Guianan primates: food composition and food choices. International Journal of Primatology, 17, 661–694.

    Article  Google Scholar 

  • Smith, A. C., Buchanan-Smith, H., Surridge, A., & Mundy, N. (2003a). Leaders of progressions in wild mixed-species troops of saddleback (Saguinus fuscicollis) and mustached tamarins (S. mystax), with an emphasis on color vision and sex. American Journal of Primatology, 61, 145–157.

    Article  PubMed  Google Scholar 

  • Smith, A. C., Buchanan-Smith, H. M., Surridge, A. K., Osorio, D., & Mundy, N. I. (2003b). The effect of color vision on the detection and selection of fruits by tamarins (Saguinus spp.). Journal of Experimental Biology, 206, 3159–3165.

    Article  PubMed  Google Scholar 

  • Smith, A. C., Surridge, A. K., Prescott, M. J., Osorio, D., Mundy, N. I., & Buchanan-Smith, H. M. (2012). Effect of colour vision status on insect prey capture efficiency of captive and wild tamarins (Saguinus spp.). Animal Behaviour, 83, 479–486.

    Article  Google Scholar 

  • Snodderly, D. M. (1979). Visual descriminations encountered in food foraging by a neotropical primate: implications for the evolution of color vision. In E. H. Burtt Jr. (Ed.), The behavioral significance of color (pp. 237–279). New York: Garland.

    Google Scholar 

  • Stevens, M., Stoddard, M., & Higham, J. (2009). Studying primate color: towards visual system-dependent methods. International Journal of Primatology, 30, 893–917.

    Article  Google Scholar 

  • Stevenson, P. R., & Link, A. (2010). Fruit preferences of Ateles belzebuth in Tinigua Park, northwestern Amazonia. International Journal of Primatology, 31, 393–407.

    Article  Google Scholar 

  • Stoner, K. E., Riba-Hernandez, P., & Lucas, P. W. (2005). Comparative use of color vision for frugivory by sympatric species of platyrrhines. American Journal of Primatology, 67, 399–409.

    Article  PubMed  Google Scholar 

  • Sumner, P., & Mollon, J. D. (2000). Catarrhine photopigments are optimized for detecting targets against a foliage background. Journal of Experimental Biology, 203, 1963–1986.

    CAS  PubMed  Google Scholar 

  • Sumner, P., & Mollon, J. D. (2000b). Chromacy as a signal of ripeness in fruits taken by primates. Journal of Experimental Biology, 203, 1987–2000.

    Google Scholar 

  • Sumner, P., & Mollon, J. D. (2003a). Colors of primate pelage and skin: objective assessment of conspicuousness. American Journal of Primatology, 59, 67–91.

    Article  PubMed  Google Scholar 

  • Sumner, P., & Mollon, J. D. (2003b). Did primate trichromacy evolve for frugivory or folivory? In J. D. Mollon, J. Pokorny, & K. Knoblanch (Eds.), Normal and defective colour vision (pp. 21–30). Oxford: Oxford University Press.

    Chapter  Google Scholar 

  • Surridge, A. K., & Mundy, N. I. (2002). Trans-specific evolution of opsin alleles and the maintenance of trichromatic colour vision in Callitrichine primates. Molecular Ecology, 11, 2157–2169.

    Article  CAS  PubMed  Google Scholar 

  • Surridge, A. K., Osorio, D., & Mundy, N. I. (2003). Evolution and selection of trichromatic vision in primates. Trends in Ecology & Evolution, 51, 198–205.

    Article  Google Scholar 

  • Surridge, A. K., Suarez, S. S., Buchanan-Smith, H. M., Smith, A. C., & Mundy, N. I. (2005). Color vision pigment frequencies in wild tamarins (Saguinus spp.). American Journal of Primatology, 67, 463–470.

    Article  CAS  PubMed  Google Scholar 

  • Tan, Y., & Li, W.-H. (1999). Trichromatic vision in prosimians. Nature, 402, 36.

    Article  CAS  PubMed  Google Scholar 

  • Treisman, A. M., & Gelade, G. (1980). A feature-integration theory of attention. Cognitive Psychology, 12, 97–136.

    Article  CAS  PubMed  Google Scholar 

  • Vapnik, V. N. (1998). Statistical learning theory. New Work: Wiley.

    Google Scholar 

  • Vogel, E., Neitz, M., & Dominy, N. (2007). Effect of color vision phenotype in the foraging of white-faced capuchins, Cebus capucinus. Behavioral Ecology, 18, 292–297.

    Article  Google Scholar 

  • Vogel, E. R. (2006). Rank differences in energy intake rates in white-faced capuchin monkeys, Cebus capucinus: The effects of contest competition. Behavioral Ecology and Sociobiology, 58, 333–344.

    Article  Google Scholar 

  • Vorobyev, M. (2004). Ecology and evolution of primate colour vision. Clinical and Experimental Optometry, 87, 230–238.

    Article  PubMed  Google Scholar 

  • Vorobyev, M., Marshall, J., Osorio, D., de Ibarra, N. H., & Menzel, R. (2001). Colourful objects through animal eyes. Color Research and Application, Supplement, 26, s214–s217.

    Article  Google Scholar 

  • Wyszecki, G., & Styles, W. S. (1982). Color science: concepts and methods, quantitative data and formulae. New Work: Wiley.

    Google Scholar 

  • Yokoyama, S. (1997). Molecular genetic basis of adaptive selection: examples from color vision in vertebrates. Annual Review of Genetics, 31, 315–336.

    Article  CAS  PubMed  Google Scholar 

  • Yokoyama, S., & Radlwimmer, F. B. (2001). The molecular genetics and evolution of red and green color vision in vertebrates. Genetics, 158, 1697–1710.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Guest Editor Lauren Brent and two anonymous reviewers for their valuable contributions to this manuscript. We thank Adrián Guadamuz Chavarria for ongoing botanical assistance in SSR, and Norberto Asensio, Adrienne Blauel, Elvin Murillo Chacón, Brandon Klüg, Michael Lemmon, and Laura Weckman for their assistance with behavioral and ecological data collection. We thank John Addicott for building a database for spectral reflectance measurements; Roger Blanco Segura, Maria Marta Chavarria, and other staff of the Área de Conservación Guanacaste for local support; and the Ministerio de Ambiente y Energía (MINAE) of Costa Rica for facilitating this study. The authors were supported by grants from the Alberta Ingenuity Fund, the Animal Behavior Society, the Leakey Foundation, and the National Sciences and Engineering Research Council of Canada (NSERC) to A. D. Melin, NSERC and the Canada Research Chairs Program to L. M. Fedigan, the Grant-in-Aid for the Japan Society for the Promotion of Science (JSPS) Fellows (15-11926) to C. Hiramatsu, and the Grants-in-Aid for Scientific Research (A) (19207018 and 22247036) from JSPS to S. Kawamura.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. D. Melin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Melin, A.D., Hiramatsu, C., Parr, N.A. et al. The Behavioral Ecology of Color Vision: Considering Fruit Conspicuity, Detection Distance and Dietary Importance. Int J Primatol 35, 258–287 (2014). https://doi.org/10.1007/s10764-013-9730-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10764-013-9730-8

Keywords

Navigation