Skip to main content
Log in

Analysis of the Meanings of the Antiderivative Used by Students of the First Engineering Courses

  • Published:
International Journal of Science and Mathematics Education Aims and scope Submit manuscript

Abstract

In this article, we present the results of the administration of a questionnaire designed to evaluate the understanding that civil engineering students have of the antiderivative. The questionnaire was simultaneously administered to samples of Mexican and Colombian students. For the analysis of the answers, we used some theoretical and methodological notions provided by the theoretical model known as Onto-Semiotic Approach (OSA) to mathematical cognition and instruction. The results revealed the meanings of the antiderivative that are more predominantly used by civil engineering students. Also, the comparison between the mathematical activity of Mexican and Colombian students provides information that allows concluding that the meanings mobilized could be shared among their communities and are not particular of their classroom or university.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Arcos, J. (2004). Rigor o entendimiento, un viejo dilema en la enseñanza de las matemáticas: el caso del cálculo infinitesimal [Rigor or understanding, an old dilemma in the teaching of mathematics: The case of infinitesimal calculus]. Tiempo de Educar, 5(10), 77–110.

  • Arcos, J., & Sepúlveda, A. (2014). Desarrollo conceptual del cálculo. Desarrollo histórico de los conceptos del cálculo. Una perspectiva docente [Conceptual development of the calculation. Historical development of the concepts of calculation. A teaching perspective]. Toluca, México: Universidad Autónoma del Estado de México.

  • Artigue, M., Batanero, C., & Kent, P. (2007). Mathematics thinking and learning at post-secondary level. In F. K. Lester (Ed.), Second handbook of research on mathematics teaching and learning (pp. 1011–1049). Charlotte, N. C: NCTM and IAP.

  • Bingolbali, E., Monaghan, J., & Roper, T. (2007). Engineering students’ conceptions of the derivative and some implications for their mathematical education. International Journal of Mathematical Education in Science and Technology, 38(6), 763–777. doi:10.1080/00207390701453579.

    Article  Google Scholar 

  • Borasi, R. (1992). Learning mathematics through inquiry. Portsmouth, NH: Heinemann.

    Google Scholar 

  • Cohen, L., Manion, L., & Morrison, K. (2011). Research methods in education. London and New York: Routledge.

    Google Scholar 

  • Contreras, A., Ordóñez, L., & Wilhelmi, M. (2010). Influencia de las pruebas de acceso a la universidad en la enseñanza de la integral definida en el Bachillerato [Influence of the tests of access to the university in the education of the integral defined in the Bachillerato]. Enseñanza de las Ciencias, 28(3), 367-384.

  • Crisóstomo, E. (2012). Idoneidad de procesos de estudio del cálculo integral en la formación de profesores de matemáticas: una aproximación desde la investigación en didáctica del cálculo y el conocimiento professional [Appropriateness of processes of study of integral calculus in the training of teachers of mathematics: An approach from the research in didactics of calculation and professional knowledge] (Doctoral dissertation). Spain: Universidad de Granada.

  • Font, V., Godino, J. D., & Gallardo, J. (2013). The emergence of objects from mathematical practices. Educational Studies in Mathematics, 82(1), 97-124. doi:10.1007/s10649-012-9411-0

  • Gnedenko, B. V., & Khalil, Z. (1979). The mathematical education of engineers. Educational Studies in Mathematics, 10(1), 71–83. doi:10.1007/BF00311176.

    Article  Google Scholar 

  • Godino, J. D., & Batanero, C. (1994). Significado institucional y personal de los objetos matemáticos [Institutional and personal meaning of mathematical objects]. Recherches en Didactique des Mathématiques, 14(3), 325-355.

  • Godino, J. D., Batanero, C., & Font, V. (2007). The onto-semiotic approach to research in mathematics education. ZDM. The International Journal on Mathematics Education, 39(1), 127-135.

  • Gordillo, W. (2015). Análisis de la comprensión sobre la noción antiderivada de estudiantes universitarios [Analysis of the understanding on the antiderivative notion of university students] (Unpublished doctoral dissertation). Chile: Universidad de Los Lagos.

  • Gordillo, W., & Pino-Fan, L. (2016). Una propuesta de reconstrucción del significado holístico de la antiderivada [A proposal for reconstruction of the holistic meaning of the antiderivative]. BOLEMA, 30(55), 535-558. doi:10.1590/1980-4415v30n55a12

  • Gordillo, W., Pino-Fan, L., Font, V., & Ponce-Campuzano, J. (2015). Diseño de un cuestionario para evaluar la comprensión sobre el objeto matemático antiderivada [Design of a questionnaire to assess the understanding on mathematical object antiderivative]. Manuscript submitted for publication.

  • Hall, W. L. (2010). Student misconceptions of the language of calculus: Definite and indefinite integrals. Paper presented at the 13th Annual Conference on Research in Undergraduate Mathematics Education, Raleigh, North Carolina.

  • Hieb, J. L., Lyle, K. B., Ralston, P., & Chariker, J. (2015). Predicting performance in a first engineering calculus course: Implications for interventions. International Journal of Mathematical Education in Science and Technology, 46(1), 40–55. doi:10.1080/0020739X.2014.936976.

    Article  Google Scholar 

  • Jones, S. R. (2013). Understanding the integral: Students’ symbolic forms. The Journal of Mathematical Behavior, 32(2), 122–141. doi:10.1016/j.jmathb.2012.12.004.

    Article  Google Scholar 

  • Jones, S. R. (2015). Areas, anti-derivatives, and adding up pieces: Definite integrals in pure mathematics and applied science contexts. The Journal of Mathematical Behavior, 38, 9–28. doi:10.1016/j.jmathb.2015.01.001.

    Article  Google Scholar 

  • Kiat, S. E. (2005). Analysis of students’ difficulties in solving integration problems. The Mathematics Educator, 9(1), 39–59.

    Google Scholar 

  • Kouropatov, A., & Dreyfus, T. (2014). Learning the integral concept by constructing knowledge about accumulation. ZDM Mathematics Education, 46(4), 533–548. doi:10.1007/s11858-014-0571-5.

    Article  Google Scholar 

  • Maull, W., & Berry, J. S. (2000). A questionnaire to elicit the mathematical concept images of engineering students. International Journal of Mathematical Education in Science and Technology, 31(6), 889–917. doi:10.1080/00207390050203388.

    Article  Google Scholar 

  • Metaxas, N. (2007). Difficulties on understanding the indefinite integral. In J. H. Woo, H. C. Lew, K. S. Park, & D. Y. Seo (Eds.), Proceedings of the 31st Conference of the International Group for the Psychology of mathematics education (Vol. 3, pp. 265–272). Seoul, Korea: PME.

    Google Scholar 

  • Neubert, J., Khavanin, M., Worley, D., & Kaabouch, N. (2014). Minimizing the institutional change required to augment calculus with real-world engineering problems. PRIMUS: Problems, Resources, and Issues in Mathematics Undergraduate Studies, 24(4), 319–334. doi:10.1080/10511970.2013.879970.

    Article  Google Scholar 

  • Pino-Fan, L. (2014). Evaluación de la faceta epistémica del conocimiento didáctico-matemático de futuros profesores de bachillerato sobre la derivada [Assessment of epistemic facet of the High-school prospective teachers' didactic-mathematical knowledge on derivative]. Granada, Spain: Universidad de Granada.

  • Pino-Fan, L., Godino, J. D., & Font, V. (2016). Assessing key epistemic features of didactic-mathematical knowledge of prospective teachers: The case of the derivative. Journal of Mathematical Teacher Education. Advance online publication. doi:10.1007/s10857-016-9349-8.

  • Ponce-Campuzano, J. C., & Rivera-Figueroa, A. (2011). Unexpected results using computer algebraic systems for computing antiderivates. Far East Journal of Mathematical Education, 7(1), 57–80.

    Google Scholar 

  • Posso, A., Uzuriaga, V. L., & Martinez A. (2011). Some reflections on the teaching of integration methods. Paper presented at the XIII Interamerican Conference on Mathematics Education (CIAEM-IACME), Recife, Brasil.

  • Randahl, M. (2012). First-year engineering students’ use of their mathematics textbook – Opportunities and constraints. Mathematics Education Research Journal, 24(3), 239–256. doi:10.1007/s13394-012-0040-9.

    Article  Google Scholar 

  • Sealey, V. (2006). Definite integrals, riemann sums, and area under a curve: What is necessary and sufficient? In S. Alatorre, J. L. Cortina, M. Sáiz, & A. Méndez (Eds.), Proceedings of the 28th annual meeting of the north American chapter of the International Group for the Psychology of mathematics education (Vol. 2, pp. 46–53). Mérida, México: Universidad Pedagógica Nacional.

    Google Scholar 

  • Sealey, V. (2014). A framework for characterizing student understanding of Riemann sums and definite integrals. The Journal of Mathematical Behavior, 33, 230–245. doi:10.1016/j.jmathb.2013.12.002.

    Article  Google Scholar 

  • Sonnert, G., & Sadler, P. M. (2014). The impact of taking a college pre-calculus course on students’ college calculus performance. International Journal of Mathematical Education in Science and Technology, 45(8), 1188–1207. doi:10.1080/0020739X.2014.920532.

    Article  Google Scholar 

  • Swidan, O., & Yerushalmy, M. (2014). Learning the indefinite integral in a dynamic and interactive technological environment. ZDM Mathematics Education, 46(4), 517–531. doi:10.1007/s11858-014-0583-1.

    Article  Google Scholar 

  • Wagner, J. F. (2015). What the integral does: Physics students’ efforts at making sense of integration. In A. D. Churukian, D. L. Jones, & L. Ding (Eds.), 2015 Physics education research Conference Proceedings (pp. 355-358). College Park, MD.

Download references

Acknowledgements

This study has been performed in the framework of research projects FONDECYT Nº 11150014 (Funded by CONICYT, Chile), and EDU2015-64646-P (MINECO/FEDER, UE).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis R. Pino-Fan.

Electronic Supplementary Material

ESM 1

(DOCX 193 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pino-Fan, L.R., Font, V., Gordillo, W. et al. Analysis of the Meanings of the Antiderivative Used by Students of the First Engineering Courses. Int J of Sci and Math Educ 16, 1091–1113 (2018). https://doi.org/10.1007/s10763-017-9826-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10763-017-9826-2

Keywords

Navigation