Skip to main content
Log in

Dielectric and Double Debye Parameters of Artificial Normal Skin and Melanoma

  • Published:
Journal of Infrared, Millimeter, and Terahertz Waves Aims and scope Submit manuscript

A Publisher Correction to this article was published on 22 September 2022

This article has been updated

Abstract

The aim of this study is to characterise the artificial normal skin and melanoma by testing samples with different fibroblast and metastatic melanoma cell densities using terahertz (THz) time-domain spectroscopy (TDS) attenuated total reflection (ATR) technique. Results show that melanoma samples have higher refractive index and absorption coefficient than artificial normal skin with the same fibroblast density in the frequency range between 0.4 and 1.6 THz, and this contrast increases with frequency. It is primarily because that the melanoma samples have higher water content than artificial normal skin, and the main reason to melanoma containing more water is that tumour cells degrade the contraction of the collagen lattice. In addition, complex refractive index and permittivity of the melanoma samples have larger variations than that of normal skin samples. For example, the refractive index of artificial normal skin at 0.5 THz increases 4.3% while that of melanoma samples increases 8.7% when the cell density rises from 0.1 to 1 M/ml. It indicates that cellular response of fibroblast and melanoma cells to THz radiation is significantly different. Furthermore, the extracted double Debye (DD) model parameters demonstrate that the static permittivity at low frequency and slow relaxation time can be reliable classifiers to differentiate melanoma from healthy skin regardless of the cell density. This study helps understand the complex response of skin tissues to THz radiation and the origin of the contrast between normal skin and cancerous tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Change history

References

  1. D.S. Rigel, J. Russak, R. Friedman, CA: a cancer journal for clinicians 60(5), 301 (2010).

  2. G.G. Hallock, D.A. Lutz, Plastic and reconstructive surgery 101(5), 1255 (1998).

  3. A.J. Fitzgerald, V.P. Wallace, M. Jimenez-Linan, L. Bobrow, R.J. Pye, A.D. Purushotham, D.D. Arnone, Radiology 239(2), 533 (2006).

  4. R.M. Woodward, B.E. Cole, V.P. Wallace, R.J. Pye, D.D. Arnone, E.H. Linfield, M. Pepper, Physics in Medicine & Biology 47(21), 3853 (2002).

  5. E. Pickwell, B. Cole, A. Fitzgerald, V. Wallace, M. Pepper, Applied Physics Letters 84(12), 2190 (2004).

  6. S. Sy, S. Huang, Y.X.J. Wang, J. Yu, A.T. Ahuja, Y.t. Zhang, E. Pickwell-MacPherson, Physics in medicine and biology 55(24), 7587 (2010).

  7. T. Diepgen, V. Mahler, British Journal of Dermatology 146, 1 (2002).

  8. V.P. Wallace, R.M. Woodward, A.J. Fitzgerald, E. Pickwell, R.J. Pye, D.D. Arnone, in Lasers in Surgery: Advanced Characterization, Therapeutics, and Systems XIII, vol. 4949 (International Society for Optics and Photonics, 2003), vol. 4949, pp. 353–360.

  9. M.A. Brun, F. Formanek, A. Yasuda, M. Sekine, N. Ando, Y. Eishii, Physics in Medicine & Biology 55(16), 4615 (2010).

  10. E. Pickwell, B. Cole, A. Fitzgerald, M. Pepper, V. Wallace, Physics in Medicine and Biology 49(9), 1595 (2004).

  11. V.P. Wallace, A.J. Fitzgerald, E. Pickwell, R.J. Pye, P.F. Taday, N. Flanagan, T. Ha, Applied spectroscopy 60(10), 1127 (2006).

  12. Y.C. Sim, J.Y. Park, K.M. Ahn, C. Park, J.H. Son, Biomedical optics express 4(8), 1413 (2013).

  13. Y.C. Sim, K.M. Ahn, J.Y. Park, C.S. Park, J.H. Son, IEEE Transactions on Terahertz Science and Technology 3(4), 368 (2013).

  14. K. Zaitsev, N. Chernomyrdin, K. Kudrin, I. Reshetov, S. Yurchenko, Optics and Spectroscopy 119(3), 404 (2015).

  15. K.I. Zaytsev, N.V. Chernomyrdin, K.G. Kudrin, A.A. Gavdush, P.A. Nosov, S.O. Yurchenko, I.V. Reshetov, in Journal of Physics: Conference Series, vol. 735 (IOP Publishing, 2016), vol. 735, pp. 012–076.

  16. R. Zhang, K. Yang, Q. Abbasi, N.A. AbuAli, A. Alomainy, in 2018 43rd International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz) (IEEE, 2018), pp. 1–2.

  17. C. Rønne, S.R. Keiding, Journal of Molecular Liquids 101(1–3), 199 (2002).

  18. B.C. Truong, H.D. Tuan, H.H. Kha, H.T. Nguyen, IEEE Transactions on Biomedical Engineering 60(6), 1528 (2013).

  19. B.C. Truong, H. Tuan, A.J. Fitzgerald, V.P. Wallace, H. Nguyen, in 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (IEEE, 2014), pp. 718–721.

  20. B.C. Truong, H.D. Tuan, V.P. Wallace, A.J. Fitzgerald, H.T. Nguyen, IEEE Transactions on Terahertz Science and Technology 5(6), 990 (2015).

  21. P. Eves, C. Layton, S. Hedley, R. Dawson, M. Wagner, R. Morandini, G. Ghanem, S. Mac Neil, British journal of dermatology 142(2), 210 (2000).

  22. E. Bell, B. Ivarsson, C. Merrill, Proceedings of the National Academy of Sciences 76(3), 1274 (1979).

  23. F. Meier, M. Nesbit, M.Y. Hsu, B. Martin, P. Van Belle, D.E. Elder, G. Schaumburg-Lever, C. Garbe, T.M. Walz, P. Donatien, et al., The American journal of pathology 156(1), 193 (2000).

  24. R. Zhang, K. Yang, Q.H. Abbasi, N.A. AbuAli, A. Alomainy, IEEE Transactions on Terahertz Science and Technology 8(99), 1 (2018).

  25. K. Ross, R. Gordon, Journal of microscopy 128(1), 7 (1982).

  26. E. Berry, A.J. Fitzgerald, N.N. Zinov’ev, G.C. Walker, S. Homer-Vanniasinkam, C.D. Sudworth, R.E. Miles, J.M. Chamberlain, M.A. Smith, in Medical Imaging 2003 (International Society for Optics and Photonics, 2003), pp. 459–470.

  27. F. Grinnell, C.R. Lamke, Journal of cell science 66(1), 51 (1984).

  28. H. Hirori, K. Yamashita, M. Nagai, K. Tanaka, Japanese journal of applied physics 43(10A), L1287 (2004).

  29. M. Nagai, H. Yada, T. Arikawa, K. Tanaka, International journal of infrared and millimeter waves 27(4), 505 (2006).

  30. D. Grischkowsky, S. Keiding, M. Van Exter, C. Fattinger, JOSA B 7(10), 2006 (1990).

  31. A. Nakanishi, Y. Kawada, T. Yasuda, K. Akiyama, H. Takahashi, Review of Scientific Instruments 83(3), 033103 (2012).

  32. R.M. Hill, Nature 275(5676), 96 (1978).

  33. J. Barthel, R. Buchner, Pure and Applied Chemistry 63(10), 1473 (1991).

  34. T. Arikawa, M. Nagai, K. Tanaka, Chemical Physics Letters 457(1–3), 12 (2008).

  35. C. Ro/nne, L. Thrane, P.O. Åstrand, A. Wallqvist, K.V. Mikkelsen, S.R. Keiding, The Journal of chemical physics 107(14), 5319 (1997).

  36. E. Pickwell, A.J. Fitzgerald, B.E. Cole, P.F. Taday, R.J. Pye, T. Ha, M. Pepper, V.P. Wallace, Journal of Biomedical Optics 10(6), 064021 (2005).

  37. K. Yang, N. Chopra, Q. Abbasi, K. Qaraqe, A. Alomainy, IEEE Access (2017).

  38. J. Kennedy, in Encyclopedia of machine learning (Springer, 2011), pp. 760–766.

  39. M. Bruehlmeier, U. Roelcke, J. Missimer, P.A. Schubiger, et al., The Journal of Nuclear Medicine 44(8), 1210 (2003).

  40. J. Chen, H. Avram, L. Crooks, M. Arakawa, L. Kaufman, A. Brito, Radiology 184(2), 427 (1992).

  41. B.M. Steinberg, K. Smith, M. Colozzo, R. Pollack, The Journal of cell biology 87(1), 304 (1980).

Download references

Funding

This work is funded by project # AARE17- 019 provided by the ADEC Award for Research Excellence, Abu Dhabi, United Arab Emirates University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Najah Abed AbuAli.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, R., Yang, K., Yang, B. et al. Dielectric and Double Debye Parameters of Artificial Normal Skin and Melanoma. J Infrared Milli Terahz Waves 40, 657–672 (2019). https://doi.org/10.1007/s10762-019-00597-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-019-00597-x

Keywords

Navigation