Skip to main content

Recovering Skin Reflectance and Geometry for Diagnosis of Melanoma

  • Chapter
  • First Online:
Computer Vision Techniques for the Diagnosis of Skin Cancer

Part of the book series: Series in BioEngineering ((SERBIOENG))

Abstract

In order to achieve an early detection of skin cancers, various state-of-the-art imaging modalities have been investigated from optical, impedance, biomechanical and physiological perspectives to find out the potential biomarkers. However multilayered skin microstructure and a wide spectrum of dynamical chromophores embedded underneath skin make it very challenging to quantify this mostly accessible, but very complex and heterogeneous largest organ of the human body. Rather than concentrating on characterizing those internal features in a microscopic level, both lesion reflectance (colour) and 3D geometry have been suggested to recover through a relative easy and cost effective way towards an improved diagnosis of melanoma. The reflectance recovered can be used as a good replacement for conventional photograph for the measurement of the ABCD criteria, while the geometry of lesion surface provides extra dimension for characterizing the topography disruption of lesion region. As both the reflectance and geometry of skin surface generally reflect the growth of chromophore cells under the skin, any external abnormalities indicating the change of skin conditions must accompany with some irregular evolvement and change with these cells. For example, a blurred and asymmetrical border possibly reveals an abnormal growth of melanocytes in the horizontal phase; whiles 3D surface indentations and protrusions accompanying variegated pigmentation may indicate an aggressive penetration of melanin into the dermal layer. We compared new features derived from reflectance and geometrical information with those traditional ones and demonstrated their significance as additional clues for melanoma diagnosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Garbe, C., Leiter, U.: Melanoma epidemiology and trends. Clin. Dermatol. 27, 3–9 (2009)

    Article  Google Scholar 

  2. Binder, M., Schwarz, M., Winkler, A., Steiner, A., Kaider, A., Wolff, K., Pehamberger, H.: Epiluminescence microscopy. A useful tool for the diagnosis of pigmented skin lesions for formally trained dermatologists. Arch. Dermatol. 31, 286–291 (1995)

    Article  Google Scholar 

  3. Cotton, S.D., Claridge, E.: Developing a predictive model of human skin colouring. Proc. SPIE Med. Imaging 2708, 814–825 (1996)

    Article  Google Scholar 

  4. Jasaitiene, D., Valiukeviciene, S., Linkeviciute, G., Raisutis, R., Jasiuniene, E., Kazys, R.: Principles of high-frequency ultrasonography for investigation of skin pathology. J. Eur. Acad. Dermatol. Venereol. 25(4), 375–382 (2011)

    Article  Google Scholar 

  5. Woodward, R.M., Wallace, V.P., Arnone, D.D., Linfield, E.H., Pepper, M.: Terahertz pulsed imaging of skin cancer in the time and frequency domain. J. Biol. Phys. 29, 257–259 (2003)

    Article  Google Scholar 

  6. Anderson, R.R., Parrish, J.A.: The optics of human skin. J. Invest. Dermatol. 77, 13–19 (1981)

    Article  Google Scholar 

  7. Lee, T.K.: Measuring border irregularity and shape of cutaneous melanocytic lesions. Ph.D. thesis, Simon Fraser University, Vancouver (2001)

    Google Scholar 

  8. Leveque, J.L.: EEMCO guidance for the assessment of skin topography. J. Eur. Acad. Dermatol. Venereol. 12, 103–114 (1999)

    MathSciNet  Google Scholar 

  9. Egawa, M., Oguri, M.H., Takahashi, M., Miyakawa, M.: The evaluation of skin friction using a frictional feel analyzer. Skin Res. Technol. 8, 41–51 (2002)

    Article  Google Scholar 

  10. Numahara, T.: From the standpoint of dermatology in digital color imaging in biomedicine. In: Tanaka,H., Miyake,Y., Nishibori M., Mukhophadhyay, D. (eds.) Digital Biocolor Society, 67–72 (2001)

    Google Scholar 

  11. Smith, L.N., Smith, M.L., Farooq, A.R., Sun, J., Warr, R.: Machine vision 3D skin texture analysis for detection of melanoma. Sens. Rev. J. 31(2), 111–119 (2011)

    Article  Google Scholar 

  12. Krishnaswamy, A., Baranoski, G.V.G.: A study on skin optics. Technical report CS-2004-01, School of Computer Science, University of Waterloo, Canada, (2004)

    Google Scholar 

  13. Sun, J., Smith, M., Smith, L., Midha, S., Bamber, J.: Object surface recovery using a multi-light photometric stereo technique. Image Vis. Comput. 25(7), 1050–1057 (2007)

    Google Scholar 

  14. Sun, J., Smith, M., Smith, L., Coutts, L., Dabis, R.: Reflectance of human skin using colour photometric stereo: with particular application to pigmented lesion analysis. Skin Res. Technol. 14, 173–179 (2008)

    Article  Google Scholar 

  15. Jaspers, S., Hopermann, H., Sauermann, G., Hoppe, U., Lunderstadt, R., Ennen, J.: Rapid in vivo measurement of the topography of human skin by active image triangulation using a digital micro-mirror device. Skin Res. Technol. 5(3), 195–207 (1999)

    Article  Google Scholar 

  16. Takiwaki, H., Overgaard, L., Serup, J.: Comparison of narrowband reflectance spectro-photometric and tristimulus colorimetric measurement of skin color—23 anatomical sites evaluated by the DermaSpectrometer and the Chroma Meter CR-200. Skin Pharmacol. 7, 217–225 (1994)

    Article  Google Scholar 

  17. Rosén, B.G., Blunt, L., Thomas, T.R.: On in-vivo skin topography metrology and replication techniques. J. Phys. Conf. Ser. 13, 325–329 (2005)

    Article  Google Scholar 

  18. Ikeda, I., Urushihara, K., Ono, T.: A pitfall in clinical photography: the appearance of skin lesions depends upon the illumination device. Arch. Dermatol.l Res. 294, 438–443 (2003)

    Google Scholar 

  19. Xu, L., Jackowski, M., Goshtasby, A., Yu, C., Dhawand, A., Huntleye, A.: Segmentation of skin cancer images. Image Vis. Comput. 17(1), 65–74 (1999)

    Article  Google Scholar 

  20. Dawson, J.B., Barker, D.J., Ellis, D.J., Grassam, E., Cotterill, J.A., Fisher, G.W., Feather, J.W.: A theoretical and experimental study of light absorption and scattering by in vivo skin. Phys. Med. Biol. 25, 695–709 (1980)

    Article  Google Scholar 

  21. Kollias, N., Bager, A.: Spectroscopic characteristics of human melanin in vivo. J. Invest. Dermatol. 85, 593–601 (1985)

    Article  Google Scholar 

  22. Connemann, B.J., Busche, H., Kreusch, J., Teichert, H.M., Wolff, H.: Quantitative surface topography as a tool in the differential diagnosis between melanoma and naevus. Skin Res. Technol. 1, 180–186 (1995)

    Article  Google Scholar 

  23. Mazzarello, V., Soggiu, D., Masia, D.R., Ena, P., Rubino, C.: Melanoma versus dysplastic naevi: microtopographic skin study with noninvasive method. J. Plast. Reconstr. Aesthetic Surg. 59, 700–705 (2006)

    Article  Google Scholar 

  24. Bondi, E.E., Elder, D.E., Dupont, G., Clark, W.H.: Skin markings in malignant melanoma. J. Am. Med. Assoc. 250, 503 (1984)

    Article  Google Scholar 

  25. Handels, H., Ross, T., Kreusch, J., Wolff, H.H., Poppl, S.J.: Computer-supported diagnosis of melanoma in profilometry. Methods Inf. Med. 38, 43–49 (1999)

    Google Scholar 

  26. Round, A.J., Duller, A.W.G., Fish, P.J.: Lesion classification using skin patterning. Skin Res. Technol. 6, 183–192 (2000)

    Article  Google Scholar 

  27. Ding, Y., Smith, L., Smith, M., Warr, R., Sun, J. Enhancement of skin tilt pattern for lesion classification. IASTED Conference on Visualization, Imaging and Image Processing, pp. 1–6 (2008)

    Google Scholar 

  28. Ding, Y., Smith, L., Smith, M., Sun, J., Warr, R.: Obtaining malignant melanoma indicators through statistical analysis of 3D skin surface disruptions. Skin Res. Technol. 15, 262–270 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiuai Sun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sun, J., Liu, Z., Ding, Y., Smith, M. (2014). Recovering Skin Reflectance and Geometry for Diagnosis of Melanoma. In: Scharcanski, J., Celebi, M. (eds) Computer Vision Techniques for the Diagnosis of Skin Cancer. Series in BioEngineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39608-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39608-3_9

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39607-6

  • Online ISBN: 978-3-642-39608-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics