Skip to main content

Advertisement

Log in

Mechanisms of Hemolysis During Sepsis

  • REVIEW
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Cell-free hemoglobin is increasingly playing a more central role in the pathogenesis of sepsis being proved to be a potent predictor of patient’s outcome. It is crucial, hence, to further investigate the mechanisms of sepsis-induced hemolysis with the aim of deriving possible therapeutic principles. Herein, we collected the most important previously known triggers of hemolysis during sepsis, which are (1) transfusion reactions and complement activation, (2) disseminated intravascular coagulation, (3) capillary stopped-flow, (4) restriction of glucose to red blood cells, (5) changes in red blood cell membrane properties, (6) hemolytic pathogens, and (7) red blood cell apoptosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adamzik, M., T. Hamburger, F. Petrat, J. Peters, H. de Groot, and M. Hartmann. 2012. Free hemoglobin concentration in severe sepsis: Methods of measurement and prediction of outcome. Critical Care 16 (4): R125.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Janz, D.R., J.A. Bastarache, J.F. Peterson, G. Sills, N. Wickersham, A.K. May, L.J. Roberts 2nd, and L.B. Ware. 2013. Association between cell-free hemoglobin, acetaminophen, and mortality in patients with sepsis: An observational study. Critical Care Medicine 41: 784–790.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Hartmann, M., and H. De Groot. 2013. Cell-free hemoglobin: A new player in sepsis pathophysiology. Critical Care Medicine 41 (8): e186–e187.

    Article  PubMed  Google Scholar 

  4. Pita Zapata, E., A. Sarmiento Penide, A. Bautista Guillen, M. Gonzalez Cabano, J.A. Agulla Budino, and M.A. Camba Rodriguez. 2010. Massive intravascular hemolysis secondary to sepsis due to Clostridium perfingens. Revista Española de Anestesiología y Reanimación 57 (5): 314–316.

    Article  PubMed  CAS  Google Scholar 

  5. Effenberger-Neidnicht, K., L. Brencher, M. Broecker-Preuss, T. Hamburger, F. Petrat, and H. De Groot. 2014. Immune stimulation by exogenous melatonin during experimental endotoxemia. Inflammation 37: 738–744.

    PubMed  CAS  Google Scholar 

  6. Oude Lansink, M., K. Görlinger, M. Hartmann, H. de Groot, and K. Effenberger-Neidnicht. 2016. Melatonin does not affect disseminated intravascular coagulation but diminishes decreases in platelet count during subacute endotoxaemia in rats. Thrombosis Research 139: 38–43.

    Article  CAS  Google Scholar 

  7. Hamburger, T., M. Broecker-Preuss, M. Hartmann, F.U. Schade, H. de Groot, and F. Petrat. 2013. Effects of glycine, pyruvate, resveratrol, and nitrite on tissue injury and cytokine response in endotoxemic rats. The Journal of Surgical Research 183: e7–e21.

    Article  PubMed  CAS  Google Scholar 

  8. Larsen, R., R. Gozzelino, V. Jeney, L. Tokaji, F.A. Bozza, A.M. Japiassu, D. Bonaparte, M.M. Cavalcante, A. Chora, A. Ferrari, et al. 2010. A central role for free heme in the pathogenesis of severe sepsis. Science Translational Medicine 2 (51): 51ra71–51ra82.

    Article  PubMed  CAS  Google Scholar 

  9. Su, D., R.I. Roth, M. Yoshida, and J. Levin. 1997. Hemoglobin increases mortality from bacterial endotoxin. Infect Immun 65 (4): 1258–1266.

    PubMed  PubMed Central  CAS  Google Scholar 

  10. Janz, D.R., and L.B. Ware. 2015. The role of red blood cells and cell-free hemoglobin in the pathogenesis of ARDS. J Intensive Care 17 (3): 20.

    Article  Google Scholar 

  11. Kaca, W., R.I. Roth, and J. Levin. 1994. Hemoglobin, a newly recognized lipopolysaccharide (LPS)-binding protein that enhances LPS biological activity. The Journal of Biological Chemistry 269 (40): 25078–25084.

    PubMed  CAS  Google Scholar 

  12. Rother, R.P., L. Bell, P. Hillmen, and M.T. Gladwin. 2005. The clinical sequelae of intravascular hemolysis and extracellular plasma hemoglobin. JAMA 293: 1653–1662.

    Article  PubMed  CAS  Google Scholar 

  13. Winslow, R.M. 2013. Oxygen: The poison is in the dose. Transfusion 53 (2): 424–437.

    Article  PubMed  CAS  Google Scholar 

  14. Weis, S., A.R. Carlos, M.R. Moita, S. Singh, B. Blankenhaus, S. Cardoso, R. Larsen, S. Rebelo, S. Schauble, L. Del Barrio, et al. 2017. Metabolic adaptation establishes disease tolerance to sepsis. Cell 169 (7): 1263–1275 e1214.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Dutra, F.F., and M.T. Bozza. 2014. Heme on innate immunity and inflammation. Frontiers in Pharmacology 5: 115.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Brunkhorst, F.M. 2006. Epidemiology, economy and practice—results of the German study on prevalence by the competence network Sepsis (SepNet). Anasthesiol Intensivmed Notfallmed Schmerzther 41 (1): 43–44.

    Article  PubMed  CAS  Google Scholar 

  17. Trampuz, A., and W. Zimmerli. 2003. Pathogenesis und Therapie der Sepsis. Schweizerisches Medizin-Forum 35: 811–818.

    Google Scholar 

  18. Vincent, J.L., E.C. Serrano, and A. Dimoula. 2011. Current management of sepsis in critically ill adult patients. Expert Review of Anti-Infective Therapy 9 (7): 847–856.

    Article  PubMed  CAS  Google Scholar 

  19. Müller-Werdan, U., M. Buerke, and K. Werdan. 2003. Fortschritte in der Therapie der Sepsis. Der Internist (Berlin) 44 (12): 1531–1540.

    Article  Google Scholar 

  20. Christaki, E., and S.M. Opal. 2008. Is the mortality rate for septic shock really decreasing? Current Opinion in Critical Care 14 (5): 580–586.

    Article  PubMed  Google Scholar 

  21. Rhodes, A., L.E. Evans, W. Alhazzani, M.M. Levy, M. Antonelli, and R. Ferrer. 2017. al. E: Surviving Sepsis campaign: International guidelines for management of sepsis and septic shock: 2016. Intensive Care Medicine 43: 304–377.

    Article  PubMed  Google Scholar 

  22. Seymour, C.W., V.X. Liu, T.J. Iwashyna, F.M. Brunkhorst, T.D. Rea, A. Scherag, G. Rubenfeld, J.M. Kahn, M. Shankar-Hari, M. Singer, C.S. Deutschman, G.J. Escobar, and D.C. Angus. 2016. Assessment of clinical criteria for Sepsis: For the third international consensus definitions for Sepsis and septic shock (Sepsis-3). JAMA 315 (8): 762–774.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Weis, S., P. Dickmann, M.W. Pletz, S.M. Coldewey, H. Gerlach, and M. Bauer. 2017. Sepsis 2017: Eine neue Definition führt zu neuen Konzepten. Deutsches Ärzteblatt 114 (29–30): 1424–1428.

    Google Scholar 

  24. Bone, R.C., W.J. Sibbald, and C.L. Sprung. 1992. The ACCP-SCCM consensus conference on Sepsis and organ failure. Chest 101 (6): 1481–1483.

    Article  PubMed  CAS  Google Scholar 

  25. Levy, M.M., M.P. Fink, J.C. Marshall, E. Abraham, D. Angus, D. Cook, J. Cohen, S.M. Opal, J.L. Vincent, G. Ramsay, et al. 2003. 2001 SCCM/ESICM/ACCP/ATS/SIS international Sepsis definitions conference. Intensive Care Med 29 (4): 530–538.

    Article  PubMed  Google Scholar 

  26. Levi, M., T. van der Poll, and H.R. Buller. 2004. Bidirectional relation between inflammation and coagulation. Circulation 109 (22): 2698–2704.

    Article  PubMed  Google Scholar 

  27. Jean-Baptiste, E. 2007. Cellular mechanisms in sepsis. Journal of Intensive Care Medicine 22 (2): 63–72.

    Article  PubMed  Google Scholar 

  28. Kumar, H., T. Kawai, and S. Akira. 2011. Pathogen recognition by the innate immune system. International Reviews of Immunology 30 (1): 16–34.

    Article  PubMed  CAS  Google Scholar 

  29. Chen, G.Y., and G. Neunez. 2010. Sterile inflammation: Sensing and reacting to damage. Nat Rev Immunol 10 (12): 826–837.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Thiemermann, C. 1997. Nitric oxide and septic shock. General Pharmacology 29 (2): 159–166.

    Article  PubMed  CAS  Google Scholar 

  31. Wattel, F., D. Mathieu, R. Neviere, and N. Bocquillon. 2000. Role of microcirculation in multiorgan failure of infectious origin. Bulletin de l'Académie Nationale de Médecine 184 (8): 1609–1619.

    PubMed  CAS  Google Scholar 

  32. Kusuma, B., and T.K. Schulz. 2009. Acute disseminated intravascular coagulation. Hospital Physicians 45 (3): 35–41.

    Google Scholar 

  33. Bloom, O., H. Wang, S. Ivanova, J.M. Vishnubhakat, M. Ombrellino, and K.J. Tracey. 1998. Hypophysectomy, high tumor necrosis factor levels, and hemoglobinemia in lethal endotoxemic shock. Shock 10: 395–400.

    Article  PubMed  CAS  Google Scholar 

  34. Su, D., R.I. Roth, and J. Levin. 1999. Hemoglobin infusion augments the tumor necrosis response to bacterial endotoxin (lipopolysaccharide) in mice. Critical Care Medicine 28: 771–778.

    Article  Google Scholar 

  35. Hartl, W., and K.-W. Jauch. 2014. Metabolic self-destruction in critically ill patients: Origins, mechanisms and therapeutic principles. Nutrition 30: 261–267.

    Article  PubMed  Google Scholar 

  36. McKechnie, S., and T. Walsh. 2018. Metabolic response to injury, fluid and electrolyte balance and shock. In Principles and practice of surgery, ed. O.J. Garden and R.W. Parks, vol. 7, 3–28. Edinburgh: Elsevier.

    Google Scholar 

  37. Kreymann, K.G., and M. Wolf. 2000. Die metabolische Antwort auf Trauma und Sepsis. Intensiv- und Notfallbehandlung 25 (1): 4–19.

    Google Scholar 

  38. Soares, M.P., and G. Weiss. 2015. The iron age of host–microbe interactions. EMBO Reports 16: 1482–1500.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Schaer, D.J., P.W. Buehler, A.I. Alayash, J.D. Belcher, and G.M. Vercellotti. 2013. Hemolysis and free hemoglobin revisited: Exploring hemoglobin and hemin scavenger as a novel class of therapeutic proteins. Blood 121: 1276–1284.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Weinberg, J.A., S.R. Barnum, and R.P. Patel. 2011. Red blood cell age and potentiation of transfusion-related pathology in trauma patients. Transfusion 51: 867–873.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Figueiredo, R.T., P.L. Fernandez, D. Mourao-Sa, B.N. Porto, F.F. Dutra, L.S. Alves, M.F. Oliveira, P.L. Oliveira, A.V. Graca-Souza, and M.T. Bozza. 2007. Characterization of heme as activator of toll-like receptor 4. The Journal of Biological Chemistry 282 (28): 20221–20229.

    Article  PubMed  CAS  Google Scholar 

  42. Belcher, J.D., C. Chen, J. Nguyen, L. Milbauer, F. Abdulla, A.I. Alayasha, A. Smith, K.A. Nath, R.P. Hebbel, and G.M. Vercellotti. 2014. Heme triggers TLR4 signaling leading to endothelial cell activation and vaso-occlusion in murine sickle cell disease. Blood 123 (3): 337–390.

    Article  CAS  Google Scholar 

  43. Pishchany, G., A.L. McCoy, V.J. Torres, J.C. Krause, J.E.J. Crowe, M.E. Fabry, and E.P. Skaar. 2010. Specificity for human hemoglobin enhances Staphylococcus aureus infection. Cell Host & Microbe 8 (6): 544–550.

    Article  CAS  Google Scholar 

  44. Tullius, M.V., C.A. Harmston, C.P. Owens, N. Chim, R.P. Morse, L.M. McMath, A. Iniguez, J.M. Kimmey, M.R. Sawaya, J.P. Whitelegge, et al. 2011. Discovery and characterization of a unique mycobacterial heme acquisition system. PNAS 108 (12): 5051–5056.

    Article  PubMed  Google Scholar 

  45. Bahl, N., R. Du, I. Winarsih, B. Ho, L. Tucker-Kellogg, B. Tidor, and J.L. Ding. 2011. Delineation of lipopolysaccharide (LPS)-binding sites on hemoglobin: From in silico predictions to biophysical characterization. The Journal of Biological Chemistry 286 (43): 37793–37803.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Roth, R.I. 1994. Hemoglobin enhances the production of tissue factor by endothelial cells in response to bacterial endotoxin. Blood 83 (10): 2860–2865.

    PubMed  CAS  Google Scholar 

  47. Atichartakarn, V., S. Jootar, K. Pathapchotiwong, and T. Srichaikul. 1979. Acute massive intravascular hemolysis and disseminated intravascular coagulation. The Southeast Asian Journal of Tropical Medicine and Public Health 10 (3): 338–341.

    PubMed  CAS  Google Scholar 

  48. Cooper, G.S., D.S. Havlir, D.M. Shlaes, and R.A. Salata. 1990. Polymicrobial bacteremia in the late 1980s: Predictors of outcome and review of the literature. Medicine 69 (2): 114–123.

    Article  PubMed  CAS  Google Scholar 

  49. Janz, D.R., J.A. Bastarache, G. Sills, N. Wickersham, A.K. May, G.R. Bernard, and L.B. Ware. 2013. Association between haptoglobin, hemopexin and mortality in adults with sepsis. Critical Care 17 (6): R272.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Lin, T., Y.H. Kwak, F. Sammy, P. He, S. Thundivalappil, G. Sun, W. Chao, and H.S. Warren. 2010. Synergistic inflammation is induced by blood degradation products with microbial toll-like receptor agonists and is blocked by hemopexin. The Journal of Infectious Diseases 202: 624–632.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Hess, J.R. 2014. Measures of stored red blood cell quality. Vox Sanguinis 107 (1): 1–9.

    Article  PubMed  CAS  Google Scholar 

  52. Youssef, L.A., and S.L. Spitalnik. 2017. Transfusion-related immunomodulation: A reappraisal. Current Opinion in Hematology 24 (6): 551–557.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  53. Cholette, J.M., A.P. Pietropaoli, K.F. Henrichs, G.M. Alfieris, K.S. Powers, R. Phipps, S.L. Spinelli, M. Swartz, F. Gensini, L.E. Daugherty, E. Nazarian, J.S. Rubenstein, D. Sweeney, M. Eaton, and N. Blumberg. 2015. Longer RBC storage duration is associated with increased postoperative infections in pediatric cardiac surgery. Pediatric Critical Care Medicine 16 (3): 227–235.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Hod, E.A., N. Zhang, S.A. Sokol, B.S. Wojczyk, R.O. Francis, D. Ansaldi, K.P. Francis, P. Della-Latta, S. Whittier, S. Sheth, J.E. Hendrickson, J.C. Zimring, G.M. Brittenham, and S.L. Spitalnik. 2010. Transfusion of red blood cells after prolonged storage produced harmful effects that are mediated by iron and inflammation. Blood 115: 4284–4289.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Sadaka, F., R. Aggu-Sher, K. Krause, J. O'Brien, E.S. Armbrecht, and R.W. Taylor. 2011. The effect of red blood cell transfusion on tissue oxygenation and microcirculation in severe septic patients. Annals of Intensive Care 1 (1): 46.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Hann, L., D.C. Brown, L.G. King, and M.B. Callan. 2014. Effect of duration of packed red blood cell storage on morbidity and mortality in dogs after transfusion: 3,095 cases (2001–2010). Journal of Veterinary Internal Medicine 28 (6): 1830–1837.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Hod, E.A., N. Zhang, S.A. Sokol, B.S. Wojczyk, R.O. Francis, D. Ansaldi, K.P. Francis, P. Della-Latta, S. Whittier, S. Sheth, J.E. Hendrickson, J.C. Zimring, G.M. Brittenham, and S.L. Spitalnik. 2010. Transfusion of red blood cells after prolonged storage produces harmful effects that are mediated by iron and inflammation. Blood 115 (21): 4284–4292.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Klein, H.G. 2017. The red cell storage lesion(s): Of dogs and men. Blood Transfusion 15 (2): 107–111.

    PubMed  PubMed Central  Google Scholar 

  59. Obrador, R., S. Musulin, and B. Hansen. 2015. Red blood cell storage lesion. Journal of Veterinary Emergency and Critical Care 25 (2): 187–199.

    Article  PubMed  Google Scholar 

  60. Koch, A., F. Tacke, K.L. Streetz, and C. Trautwein. 2012. Treatment of inflammatory bowel disease in intensive care medicine. Deutsche Medizinische Wochenschrift 137 (21): 1107–1118 quiz 1119-1120.

    Article  PubMed  CAS  Google Scholar 

  61. Basran, S., R.J. Frumento, A. Cohen, S. Lee, Y. Du, E. Nishanian, H.S. Kaplan, M. Stafford-Smith, and E. Bennett-Guerrero. 2006. The association between duration of storage of transfused red blood cells and morbidity and mortality after reoperative cardiac surgery. Anesthesia and Analgesia 103 (1): 15–20 table of contents.

    Article  PubMed  Google Scholar 

  62. Purdy, F.R., M.G. Tweeddale, and P.M. Merrick. 1997. Association of mortality with age of blood transfused in septic ICU patients. Canadian Journal of Anaesthesia 44 (12): 1256–1261.

    Article  PubMed  CAS  Google Scholar 

  63. Janz, D.R., Z. Zhao, T. Koyama, A.K. May, G.R. Bernard, J.A. Bastarache, P.P. Young, and L.B. Ware. 2013. Longer storage duration of red blood cells is associated with an increased risk of acute lung injury in patients with sepsis. Annals Intensive Care 3: 33.

    Article  Google Scholar 

  64. Tinmouth, A., D. Fergusson, I.C. Yee, P.C. Hebert, and A. Investigators. 2006. Canadian critical care trials G: Clinical consequences of red cell storage in the critically ill. Transfusion 46 (11): 2014–2027.

    Article  PubMed  Google Scholar 

  65. Vamvakas, E.C., and J.H. Carven. 2000. Length of storage of transfused red cells and postoperative morbidity in patients undergoing coronary artery bypass graft surgery. Transfusion 40: 101–109.

    Article  PubMed  CAS  Google Scholar 

  66. van de Watering, L., J. Lorinser, M. Versteegh, R. Westendord, and A. Brand. 2006. Effects of storage time of red blood cell transfusions on the prognosis of coronary artery bypass graft patients. Transfusion 46 (10): 1712–1718.

    Article  PubMed  Google Scholar 

  67. Heddle, N.M., R.J. Cook, D.M. Arnold, Y. Liu, R. Barty, M.A. Crowther, P.J. Devereaux, J. Hirsh, T.E. Warkentin, K.E. Webert, D. Roxby, M. Sobieraj-Teague, A. Kurz, D.I. Sessler, P. Figueroa, M. Ellis, and J.W. Eikelboom. 2016. Effect of short-term vs. long-term blood storage on mortality after transfusion. The New England Journal of Medicine 375 (20): 1937–1945.

    Article  PubMed  Google Scholar 

  68. Wendelbo, O., T. Hervig, O. Haugen, J. Seghatchian, and H. Reikvam. 2017. Microcirculation and red cell transfusion in patients with sepsis. Transfusion and Apheresis Science 56 (6): 900–905.

    Article  PubMed  Google Scholar 

  69. Hendrickson, J.E., and C.D. Hillyer. 2009. Noninfectious serious hazards of transfusion. Anesthesia and Analgesia 108 (3): 759–769.

    Article  PubMed  Google Scholar 

  70. Flegel, W.A. 2015. Pathogenesis and mechanisms of antibody-mediated hemolysis. Transfusion 55 (Suppl 2): S47–S58.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Stowell, S.R., A.M. Winkler, C.L. Maier, C.M. Arthur, N.H. Smith, K.R. Girard-Pierce, R.D. Cummings, J.C. Zimring, and J.E. Hendrickson. 2012. Initiation and regulation of complement during hemolytic transfusion reactions. Clincal and Developmental Immunology 2012: 1–12.

    Article  Google Scholar 

  72. Davenport, R. 1994. Cytokines and erythrocytes incompatibility. Current Opinion in Hematology 1 (6): 452–456.

    PubMed  CAS  Google Scholar 

  73. Ehrnthaller, C., A. Ignatius, F. Gebhard, and M. Huber-Lang. 2011. New insights of an defense system: Structure, function, and clinical relevance of the complement system. Molecular Medicine 17: 317–329.

    Article  PubMed  CAS  Google Scholar 

  74. Smedegard, G., L. Cui, and T.E. Hugli. 1989. Endotoxin-induced shock in the rat. The American Journal of Pathology 135 (3): 489–497.

    PubMed  PubMed Central  CAS  Google Scholar 

  75. Ehrnthaller, C., U. Amara, S. Weckbach, M. Kalbitz, M. Huber-Lang, and S. Bahrami. 2012. Alteration of complement hemolytic activity in different trauma and sepsis models. Journal of Inflammation Research 5: 59–66.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Schubert, J., and A. Roth. 2015. Update on paroxysmal nocturnal haemoglobinuria: On the long way to understand the principles of the disease. European Journal of Haematology 94 (6): 464–473.

    Article  PubMed  Google Scholar 

  77. Huber-Lang, M.S., J.V. Sarma, S.R. McGuire, K.T. Lu, R.F. Guo, V.A. Padgaonkar, E.M. Younkin, I.J. Laudes, N.C. Riedemann, J.G. Younger, et al. 2001. Protective effects of anti-C5a peptide antibodies in experimental sepsis. The FASEB Journal 15 (3): 568–570.

    Article  PubMed  CAS  Google Scholar 

  78. Huber-Lang, M., N. Riedemann, J.V. Sarma, E.M. Younkin, S.R. McGuire, I.J. Laudes, K.T. Lu, R.-F. Guo, T.A. Neff, V.A. Padgaonkar, et al. 2002. Protection of innate immunity by C5aR antagonist in septic mice. The FASEB Journal 16: 1567–1574.

    Article  PubMed  CAS  Google Scholar 

  79. Hitomi, Y., and S. Fujii. 1982. Inhibition of various immunological reactions in vivo by a new synthetic complement inhibitor. International Archives of Allergy and Applied Immunology 69: 262–267.

    Article  PubMed  CAS  Google Scholar 

  80. Brauckmann, S., K. Effenberger-Neidnicht, H. de Groot, M. Nagel, J. Peters, and M. Hartmann. 2015. Mechanismen der Lipopolysaccharid-induzierten Hämolyse—Hinweise für eine direkte Zellmembraninteraktion. Anästhesiologie & Intensivmedizin 56: 5–6.

    Google Scholar 

  81. Brauckmann, S., K. Effenberger-Neidnicht, H. de Groot, M. Nagel, C. Mayer, J. Peters, and M. Hartmann. 2016. Lipopolysaccharide-induced haemolysis: Evidence for direct membrane interactions. Scientific Reports 6: 35508.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Noris, M., and G. Remuzzi. 2005. Hemolytic uremic syndrome. Journal of the American Society of Nephrology: JASN 16 (4): 1035–1050.

    Article  PubMed  CAS  Google Scholar 

  83. Heideman, M., B. Kauser, and L.-E. Gelin. 1979. Complement activation early in endotoxin shock. The Journal of Surgical Research 26: 74–78.

    Article  PubMed  CAS  Google Scholar 

  84. Levi, M., and M. Schlultz. 2010. Coagulopathy and platelet disorders in critically ill patients. Minerva Anestesiologica 76 (10): 851–859.

    PubMed  CAS  Google Scholar 

  85. Levi, M. 2008. The coagulant response in sepsis. Clinics in Chest Medicine 29 (4): 627–642.

    Article  PubMed  Google Scholar 

  86. Adamzik, M., M. Eggmann, U.H. Frey, K. Gorlinger, M. Broecker-Preuss, G. Marggraf, F. Saner, H. Eggebrecht, J. Peters, and M. Hartmann. 2010. Comparison of thromboelastometry with procalcitonin, interleukin 6, and C-reactive protein as diagnostic tests for severe sepsis in critically ill adults. Critical Care 14 (5): R178.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Bahl, N., I. Winarsih, L. Tucker-Kellogg, and J.L. Ding. 2014. Extracellular haemoglobin upregulates and binds to tissue factor on macrophages: Implications for coagulation and oxidative stress. Thrombosis and Haemostasis 111 (1): 67–78.

    Article  PubMed  CAS  Google Scholar 

  88. Bull, B.S., and I.N. Kuhn. 1970. The production of schistocytes by fibrin strands (a scanning electron microscope study). Blood 35 (1): 104–111.

    PubMed  CAS  Google Scholar 

  89. Heyes, H., and W. Köhle. 1976. B. S: The appearance of schistocytes in the peripheral blood in correlation to the degree of disseminated intravascular coagulation. An experimental study in rats. Haemostasis 5 (2): 66–73.

    PubMed  CAS  Google Scholar 

  90. Covarrubias Espinoza, G., and J.L. Lepe Zuniga. 1980. Jaundice caused by microangiopathic hemolysis associated to septicemia in the newborn. Boletín Médico del Hospital Infantil de México 1980 (37): 3.

    Google Scholar 

  91. Grigir'ev, G.P., and V.V. Usynin. 1991. Coagulative activity and acid resistance of damaged and intact erythrocytes in various types of intravascular blood coagulation. Gematologiia i Transfuziologiia 36 (4): 13–15.

    PubMed  CAS  Google Scholar 

  92. Borrego, D., P. María-Tome, P. Cascales, J.M. García Aguayo, G. Pérez Amoros, and A. Abad. 1991. Massive intravascular hemolysis in septicemia caused by Clostridium perfringens. Sangre (Barcelona) 36 (4): 315–317.

    CAS  Google Scholar 

  93. Daly, J.J., M.N. Haeusler, C.J. Hogan, and E.M. Wood. 2006. Massive intravascular haemolysis with T-activation and disseminated intravascular coagulation due to clostridial sepsis. British Journal of Haematology 134 (6): 553.

    Article  PubMed  CAS  Google Scholar 

  94. Novotny, J., and M. Penka. 2012. Disturbances of hemostasis in sepsis. Vnitřní Lékařství 58 (6): 439–447.

    PubMed  CAS  Google Scholar 

  95. Jacobi, H., D. Karitzky, C. Mittermayer, G. Seseke, I. Witt, and W. Künzer. 1971. Intravasale Hämolyse und Blutgerinnung: Tierexperimentelle Untersuchungen üder die Folgen einer intravenösen Hämolysatapplikation. Blut Band XXII: 244–254.

    Article  Google Scholar 

  96. Helms, C.C., M. Marvel, W. Zhao, M. Stahle, R. Vest, G.J. Kato, J.S. Lee, G. Christ, M.T. Gladwin, R.R. Hantgan, and D.B. Kim-Shapiro. 2013. Mechanisms of hemolysis-associated platelet activation. Journal of Thrombosis and Haemostasis 11 (12): 2148–2154.

    Article  PubMed  CAS  Google Scholar 

  97. Dale, J., K. Ohlsson, K. Nordstoga, and A.O. Aasen. 1980. Intravascular hemolysis and ultrastructural changes of erythrocytes in lethal canine endotoxin shock. European Surgical Research 12 (1): 39–51.

    Article  PubMed  CAS  Google Scholar 

  98. Aasen, A.O., J. Dale, K. Ohlsson, and M. Gallimore. 1978. Effects of slow intravenous administration of endotoxin on blood cells and coagulation in dogs. European Surgical Research 10 (3): 194–205.

    Article  PubMed  CAS  Google Scholar 

  99. Koch, T., S. Geiger, and M.J.R. Ragaller. 2001. Monitoring of organ dysfunction in sepsis/systemic inflammatory response syndrome: Novel strategies. Journal of the American Society of Nephrology: JASN 12 (17): S53–S59.

    PubMed  Google Scholar 

  100. Lam, C., K. Tyml, C.M. Martin, and W.J. Sibbald. 1994. Microvascular perfusion is impaired in a rat model of normotensive sepsis. The Journal of Clinical Investigation 94: 2077–2083.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Farquhar, I., C.M. Martin, C. Lam, R. Potter, C.G. Ellis, and W.J. Sibbald. 1996. Decreased capillary density in vivo in bowel mucosa of rats with normotensive sepsis. The Journal of Surgical Research 61: 190–196.

    Article  PubMed  CAS  Google Scholar 

  102. Edul, V.S., C. Ince, A.R. Vazquez, P.N. Rubatto, E.D. Espinoza, S. Welsh, C. Enrico, and A. Dubin. 2016. Similar microcirculatory alterations in patients with normodynamic and hyperdynamic septic shock. Annals of the American Thoracic Society 13 (2): 240–247.

    PubMed  Google Scholar 

  103. Bateman, R.M., M.D. Sharpe, J.E. Jagger, and C.G. Ellis. 2015. Sepsis impairs microvascular autoregulation and delays capillary response within hypoxic capillaries. Critical Care 19: 389.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Fukumura, D., S. Miura, I. Kurose, H. Higuchi, H. Suzuki, H. Ebinuma, J.-Y. Han, N. Watanabe, W. Yashi, M. Kitajima, et al. 1996. IL-1 is an important mediator for microcirculatory changes in endotoxin-induced intestinal mucosal damage. Digestive Diseases and Sciences 41 (12): 2482–2492.

    Article  PubMed  CAS  Google Scholar 

  105. Oude Lansink, M., V. Patyk, H. de Groot, and K. Effenberger-Neidnicht. 2017. Melatonin reduces changes to small intestinal microvasculature during systemic inflammation. The Journal of Surgical Research 211: 114–125.

    Article  CAS  Google Scholar 

  106. Hinshaw, L.B. 1996. Sepsis/septic shock: Participation of the microcirculation: An abbreviated review. Critical Care Medicine 24: 1072–1078.

    Article  PubMed  CAS  Google Scholar 

  107. Sonnino, R.E., J.M. Riddle, and A.S. Besser. 1988. Small bowel transplantation in the rat: Ultrastructural changes during the early phases of rejection. Journal of Investigative Surgery 1 (3): 181–191.

    Article  PubMed  CAS  Google Scholar 

  108. Mumme, C. 1940. Zur Klinik und Pathologie der Endokarditis und Aortitisfibroplastica sowie Thromboendarteritis obliterans mit hochgradiger Eosinophilie im Blut, Knochenmark und in den Organen. Zeitschrift für Klinische Medizin 138 (1): 22.

    Google Scholar 

  109. McKay, D.G., A.N. Whitaker, and V. Cruse. 1969. Studies of catecholamine shock. II. An experimental model of microangiopathic hemolysis. The American Journal of Pathology 56 (2): 177–200.

    PubMed  PubMed Central  CAS  Google Scholar 

  110. McKay, D.G., and A.N. Whitaker. 1969. Studies of catecholamine shock. I. Disseminated intravascular coagulation. The American Journal of Pathology 56 (2): 153–176.

    PubMed  PubMed Central  Google Scholar 

  111. Effenberger-Neidnicht, K., Bornmann, S., Jägers, J., Patyk, V., Kirsch, M. 2018. Microvascular stasis and hemolysis: Coincidence or causality? Unpublished results.

  112. Effenberger-Neidnicht, K., S. Bornmann, M. Hartmann, J. Jägers, M. Oude Lansink, and H. De Groot. 2015. Is there an association between cell-free hemoglobin and the congestion of capillaries in small intestines during endotoxemia? Infection 43 (Supplement 1): S16–S17.

    Google Scholar 

  113. Hanssen, S.J., T. Lubbers, C.M. Hodin, F.W. Prinzen, W.A. Buurman, and M.J. Jacobs. 2011. Hemolysis results in impaired intestinal microcirculation and intestinal epithelial cell injury. World Journal of Gastroenterology 17 (2): 213–218.

    Article  PubMed  PubMed Central  Google Scholar 

  114. de Haan, J.J., I. Vermeulen Windsant, T. Lubbers, S.J. Hanssen, M. Hadfoune, F.W. Prinzen, J.W. Greve, and W.A. Buurman. 2013. Prevention of hemolysis-induced organ damage by nutritional activation of the vagal anti-inflammatory reflex. Critical Care Medicine 41 (11): e361–e367.

    Article  PubMed  CAS  Google Scholar 

  115. Vermeulen Windsant, I.C., M.G. Snoeijs, S.J. Hanssen, S. Altintas, J.H. Heijmans, T.A. Koeppel, G.W. Schurink, W.A. Buurman, and M.J. Jacobs. 2010. Hemolysis is associated with acute kidney injury during major aortic surgery. Kidney International 77 (10): 913–920.

    Article  PubMed  Google Scholar 

  116. Vinchi, F., S. Gastaldi, L. Silengo, F. Altruda, and E. Tolosano. 2008. Hemopexin prevents endothelial damage and liver congestion in a mouse model of heme overload. The American Journal of Pathology 173 (1): 289–299.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. Van Cromphaut, S.J., I. Vanhorebeck, and G. Van den Berghe. 2008. Glucose metabolism and insulin resistance in sepsis. Current Pharmaceutical Design 14 (19): 1887–1899.

    Article  PubMed  Google Scholar 

  118. Doursout, M.F., T. Oguchi, U.M. Fischer, Y. Liang, B. Chelly, C.J. Hartley, and J.E. Chelly. 2008. Distribution of NOS isoforms in a porcine endotoxin shock model. Shock 29 (6): 692–702.

    PubMed  PubMed Central  CAS  Google Scholar 

  119. Feig, S.A., G.B. Segel, S.B. Shohet, and D.G. Nathan. 1972. Energy metabolism in human erythrocytes: Effects of glucose depletion. The Journal of Clinical Investigation 51: 1547–1554.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Van Wijk, R., and W.W. Van Solinge. 2005. The energy-less red blood cell is lost: Erythrocytes enzyme abnormalities of glucolysis. Blood 106 (13): 4034–4042.

    Article  PubMed  CAS  Google Scholar 

  121. Jägers, J., S. Brauckmann, M. Kirsch, and K. Effenberger-Neidnicht. 2018. Moderate glucose supply reduces hemolysis during systemic inflammation. Journal of Inflammation Research 11: 87–94.

    Article  PubMed  PubMed Central  Google Scholar 

  122. Hendry, E.B. 1951. Delayed hemolysis of human erythrocytes in solutions of glucose. The Journal of General Physiology 35 (4): 605–616.

    Article  Google Scholar 

  123. Nagel, M., S. Brauckmann, F. Moegle-Hofacker, K. Effenberger-Neidnicht, M. Hartmann, H. de Groot, and C. Mayer. 2015. Impact of bacterial endotoxin on the structure of DMPC membranes. Biochimica et Biophysica Acta, Biomembranes 1848 (10): 2271–2276.

    Article  CAS  Google Scholar 

  124. Pöschl, J.M., C. Leray, P. Ruef, J.P. Cazenave, and O. Linderkamp. 2003. Endotoxin binding to erythrocyte membrane and erythrocyte deformability in human sepsis and in vitro. Critical Care Medicine 31 (3): 924–928.

    Article  PubMed  CAS  Google Scholar 

  125. Hurd, T.C., K.S. Dasmahapatra, B.F. Rush, and G.W. Machiedo. 1988. Red blood cell deformability in human and experimental sepsis. Archives of Surgery 123: 217–220.

    Article  PubMed  CAS  Google Scholar 

  126. Baskurt, O.K., D. Gelmont, and H.J. Meiselman. 1998. Red blood cell deformability in sepsis. American Journal of Respiratory and Critical Care Medicine 157: 421–427.

    Article  PubMed  CAS  Google Scholar 

  127. Arabski, M., K. Gwozdzinski, B. Sudak, and W. Kaca. 2008. Effects of Proteus mirabilis lipopolysaccharides with different O-polysaccharide structures on the plasma membrane of human erythrocytes. Zeitschrift für Naturforschung 63c: 460–468.

    Article  Google Scholar 

  128. Rubenberg, M.L., L.R.I. Baker, J.A. McBride, L.H. Sevitt, and M.C. Brain. 1968. Intravascular coagulation in a case of Clostridium perfingens septicaemia: Treatment by exchange transfusion and heparin. British Medical Journal 4: 271–274.

    Article  Google Scholar 

  129. Jacob, H.S. 1966. Abnormalities in the physiology of the erythrocyte membrane in hereditary spherocytosis. The American Journal of Medicine 41 (5): 734–743.

    Article  PubMed  CAS  Google Scholar 

  130. Macfarlane, M.G., and B.C.J.G. Knight. 1941. The bacterial chemistry of bacterial toxins: I. The lecithinase activity of Cl. welchii toxins. The Biochemical Journal 35 (8–9): 884–902.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  131. Pastene, B., E. Gregoire, V. Blasco, and J. Albanese. 2014. Alpha and theta toxin Clostridium perfringens infection complicated by septic shock and hemolysis. Annales Françaises d'Anesthésie et de Réanimation 33: 548–553.

    Article  Google Scholar 

  132. Parker, M.W., and S.C. Feil. 2005. Pore-forming protein toxins: From structure to function. Progress in Biophysics and Molecular Biology 88 (1): 91–142.

    Article  PubMed  CAS  Google Scholar 

  133. Tilley, S.J., and H.R. Saibil. 2006. The mechanism of pore formation by bacterial toxins. Current Opinion in Structural Biology 16 (2): 230–236.

    Article  PubMed  CAS  Google Scholar 

  134. Aroian, R., and F.G. van der Goot. 2007. Pore-forming toxins and cellular non-immune defenses (CNIDs). Current Opinion in Microbiology 10 (1): 57–61.

    Article  PubMed  CAS  Google Scholar 

  135. Gonzalez, M.R., M. Bischofberger, L. Pernot, F.G. van der Goot, and B. Freche. 2008. Bacterial pore-forming toxins: The (w)hole story? Cellular and Molecular Life Sciences 65 (3): 493–507.

    Article  PubMed  CAS  Google Scholar 

  136. Libertin, C.R., R. Dumitru, and D.S. Stein. 1992. The hemolysin/bacteriocin produced by enterococcus is a marker of pathogenicity. Diagnostic Microbiology and Infectious Disease 15: 115–120.

    Article  PubMed  CAS  Google Scholar 

  137. Skals, M., N.R. Jorgensen, J. Leipziger, and H.A. Praetorius. 2009. Alpha-hemolysin from Escherichia coli uses endogenous amplification through P2X receptor activation to induce hemolysis. PNAS 106 (10): 4030–4035.

    Article  PubMed  Google Scholar 

  138. Al-Wali, W.I., S.J. Elvin, C.M. Mason, A. Clark, and H.S. Tranter. 1998. Comparative phenotypic characteristics of Staphylococcus aureus isolated from line and non-line associated septicaemia, CAPD peritonitis, bone/joint infections and healthy nasal carriers. Journal of Medical Microbiology 47 (3): 265–274.

    Article  PubMed  CAS  Google Scholar 

  139. Hacker, J., H. Hof, L. Emödy, and W. Goebel. 1986. Influence of cloned Escherichia coli hemolysin genes, S-fimbriae and serum resistance on pathogenicity in different animal models. Microbial Pathogenesis 1: 533–547.

    Article  PubMed  CAS  Google Scholar 

  140. Lang, F., E. Gulbins, P.A. Lang, D. Zappulla, and M. Föller. 2010. Ceramide in suicidal death of erythrocytes. Cellular Physiology and Biochemistry 26: 21–28.

    Article  PubMed  CAS  Google Scholar 

  141. Qadri, S.M., R. Bissinger, Z. Solh, and P.A. Oldenborg. 2017. Eryptosis in health and disease: A paradigm shift towards understanding the (patho)physiological implications of programmed cell death of erythrocytes. Blood Reviews 31 (6): 349–361.

    Article  PubMed  CAS  Google Scholar 

  142. Lang, E., and F. Lang. 2015. Triggers, inhibitors, mechanisms, and significance of eryptosis: The suicidal erythrocyte death. BioMed Research International 2015: 513518.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  143. Föller, M., S.M. Huber, and F. Lang. 2008. Erythrocyte programmed cell death. IUBMB Life 60 (10): 3.

    Article  CAS  Google Scholar 

  144. Lang, C.H., Z. Spolarics, A. Ottlakan, and J.J. Spitzer. 1993. Effect of high-dose endotoxin on glucose production and utilization. Metabolism 42 (10): 1351–1358.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work is dedicated to Prof. Dr. Herbert de Groot who suddenly deceased at the age of 65 years.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katharina Effenberger-Neidnicht.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Effenberger-Neidnicht, K., Hartmann, M. Mechanisms of Hemolysis During Sepsis. Inflammation 41, 1569–1581 (2018). https://doi.org/10.1007/s10753-018-0810-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-018-0810-y

KEY WORDS

Navigation