Skip to main content
Log in

Quercetin and Ascorbic Acid Suppress Fructose-Induced NLRP3 Inflammasome Activation by Blocking Intracellular Shuttling of TXNIP in Human Macrophage Cell Lines

  • ORIGINAL ARTICLE
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

The aim of this study was to identify the role of thioredoxin-interacting protein (TXNIP) and its interaction with antioxidants in the activation of the fructose-induced NOD-like receptor protein 3 (NLRP3) inflammasome in human macrophages. The study was performed with U937 and THP-1 macrophage cell lines. Total reactive oxygen species (ROS) were measured by flow cytometry. Interleukin-1β (IL-1β), IL-18, NLRP3, TXNIP, and caspase-1 protein expression was detected using western blotting. Quantitative real-time polymerase chain reaction was used to detect IL-1β, IL-18, and caspase-1 gene expression. Intracellular shuttling of TXNIP was assessed by immunofluorescent staining with MitoTracker Red. Increased production of ROS and expression of IL-1β, IL-18, and caspase-1 genes and proteins were observed in U937 and THP-1 cells incubated with fructose and were effectively inhibited by quercetin and ascorbic acid. Intracellular shuttling of TXNIP from the nucleus into the mitochondria was detected under stimulation with fructose, which was also attenuated by antioxidants quercetin and ascorbic acid but not butylated hydroxyanisole. Treatment of macrophages with fructose promoted the association between TXNIP and NLRP3 in the cytosol, sequentially resulting in the activation of the NLRP3 inflammasome. This study revealed that intracellular TXNIP protein is a critical regulator of activation of the fructose-induced NLRP3 inflammasome, which can be effectively blocked by the antioxidants quercetin and ascorbic acid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Yoshihara, E., S. Masaki, Y. Matsuo, Z. Chen, H. Tian, and J. Yodoi. 2014. Thioredoxin/Txnip: redoxisome, as a redox switch for the pathogenesis of diseases. Frontiers in Immunology 4: 514.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Dunn, L.L., A.M. Buckle, J.P. Cooke, and M.K. Ng. 2010. The emerging role of the thioredoxin system in angiogenesis. Arteriosclerosis, Thrombosis, and Vascular Biology 30: 2089–2098.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Junn, E., S.H. Han, J.Y. Im, Y. Yang, E.W. Cho, H.D. Um, D.K. Kim, K.W. Lee, P.L. Han, S.G. Rhee, and I. Choi. 2000. Vitamin D3 up-regulated protein 1 mediates oxidative stress via suppressing the thioredoxin function. Journal of Immunology 164: 6287–6295.

    Article  CAS  Google Scholar 

  4. Byon, C.H., T. Han, J. Wu, and S.T. Hui. 2015. Txnip ablation reduces vascular smooth muscle cell inflammation and ameliorates atherosclerosis in apolipoprotein E knockout mice. Atherosclerosis 241: 313–321.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Schroder, K., and J. Tschopp. 2010. The inflammasomes. Cell 140: 821–832.

    Article  CAS  PubMed  Google Scholar 

  6. Zhou, R., A. Tardivel, B. Thorens, I. Choi, and J. Tschopp. 2010. Thioredoxin-interacting protein links oxidative stress to inflammasome activation. Nature Immunology 11: 136–140.

    Article  CAS  PubMed  Google Scholar 

  7. Liu, Y., K. Lian, L. Zhang, R. Wang, F. Yi, C. Gao, C. Xin, D. Zhu, Y. Li, W. Yan, L. Xiong, E. Gao, H. Wang, and L. Tao. 2014. TXNIP mediates NLRP3 inflammasome activation in cardiac microvascular endothelial cells as a novel mechanism in myocardial ischemia/reperfusion injury. Basic Research in Cardiology 109: 415.

    Article  PubMed  Google Scholar 

  8. Abais, J.M., M. Xia, G. Li, Y. Chen, S.M. Conley, T.W. Gehr, K.M. Boini, and P.L. Li. 2014. Nod-like receptor protein 3 (NLRP3) inflammasome activation and podocyte injury via thioredoxin-interacting protein (TXNIP) during hyperhomocysteinemia. Journal of Biological Chemistry 289: 27159–27168.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zhou, R., A.S. Yazdi, P. Menu, and J. Tschopp. 2011. A role for mitochondria in NLRP3 inflammasome activation. Nature 469: 221–225.

    Article  CAS  PubMed  Google Scholar 

  10. Saxena, G., J. Chen, and A. Shalev. 2010. Intracellular shuttling and mitochondrial function of thioredoxin-interacting protein. Journal of Biological Chemistry 285: 3997–4005.

    Article  CAS  PubMed  Google Scholar 

  11. Glushakova, O., T. Kosugi, C. Roncal, W. Mu, M. Heinig, P. Cirillo, L.G. Sánchez-Lozada, R.J. Johnson, and T. Nakagawa. 2008. Fructose induces the inflammatory molecule ICAM-1 in endothelial cells. Journal of the American Society of Nephrology 19: 1712–1720.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zhang, X., J.H. Zhang, X.Y. Chen, Q.H. Hu, M.X. Wang, R. Jin, Q.Y. Zhang, W. Wang, R. Wang, L.L. Kang, J.S. Li, M. Li, Y. Pan, J.J. Huang, and L.D. Kong. 2015. Reactive oxygen species-induced TXNIP drives fructose-mediated hepatic inflammation and lipid accumulation through NLRP3 inflammasome activation. Antioxidants and Redox Signaling 22: 848–870.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kang, L.L., D.M. Zhang, C.H. Ma, J.H. Zhang, K.K. Jia, J.H. Liu, R. Wang, and L.D. Kong. 2016. Cinnamaldehyde and allopurinol reduce fructose-induced cardiac inflammation and fibrosis by attenuating CD36-mediated TLR4/6-IRAK4/1 signaling to suppress NLRP3 inflammasome activation. Science Reports 6: 27460.

    Article  CAS  Google Scholar 

  14. Hu, Q.H., X. Zhang, Y. Pan, Y.C. Li, and L.D. Kong. 2012. Allopurinol, quercetin and rutin ameliorate renal NLRP3 inflammasome activation and lipid accumulation in fructose-fed rats. Biochemical Pharmacology 84: 113–125.

    Article  CAS  PubMed  Google Scholar 

  15. Zhang, M., S.G. Swarts, L. Yin, C. Liu, Y. Tian, Y. Cao, M. Swarts, S. Yang, S.B. Zhang, K. Zhang, S. Ju, D.J. Olek Jr., L. Schwartz, P.C. Keng, R. Howell, L. Zhang, and P. Okunieff. 2011. Antioxidant properties of quercetin. Advances in Experimental Medicine and Biology 701: 283–289.

    Article  CAS  PubMed  Google Scholar 

  16. Arrigoni, O., and M.D. De Tullio. 2002. Ascorbic acid: much more than just an antioxidant. Biochimica et Biophysica Acta 1569: 1–9.

    Article  CAS  PubMed  Google Scholar 

  17. Festjens, N., M. Kalai, J. Smet, A. Meeus, R. Van Coster, X. Saelens, and P. Vandenabeele. 2006. Butylated hydroxyanisole is more than a reactive oxygen species scavenger. Cell Death and Differentiation 13: 166–169.

    Article  CAS  PubMed  Google Scholar 

  18. Hu, Q.H., C. Wang, J.M. Li, D.M. Zhang, and L.D. Kong. 2009. Allopurinol, rutin, and quercetin attenuate hyperuricemia and renal dysfunction in rats induced by fructose intake: renal organic ion transporter involvement. American Journal of Physiology. Renal Physiology 297: F1080–F1091.

    Article  CAS  PubMed  Google Scholar 

  19. Mittal, M., M.R. Siddiqui, K. Tran, S.P. Reddy, and A.B. Malik. 2014. Reactive oxygen species in inflammation and tissue injury. Antioxidants and Redox Signaling 20: 1126–1167.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wang, W., C. Wang, X.Q. Ding, Y. Pan, T.T. Gu, M.X. Wang, Y.L. Liu, F.M. Wang, S.J. Wang, and L.D. Kong. 2013. Quercetin and allopurinol reduce liver thioredoxin-interacting protein to alleviate inflammation and lipid accumulation in diabetic rats. British Journal of Pharmacology 169: 1352–1371.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Schulze, P.C., J. Yoshioka, T. Takahashi, Z. He, G.L. King, and R.T. Lee. 2004. Hyperglycemia promotes oxidative stress through inhibition of thioredoxin function by thioredoxin-interacting protein. Journal of Biological Chemistry 279: 30369–30374.

    Article  CAS  PubMed  Google Scholar 

  22. Ives, A., J. Nomura, F. Martinon, T. Roger, D. LeRoy, J.N. Miner, G. Simon, N. Busso, and A. So. 2015. Xanthine oxidoreductase regulates macrophage IL1β secretion upon NLRP3 inflammasome activation. Nature Communications 6: 6555.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kim, G.N., and H.D. Jang. 2009. Protective mechanism of quercetin and rutin using glutathione metabolism on HO-induced oxidative stress in HepG2 cells. Annals of the New York Academy of Sciences 1171: 530–537.

    Article  CAS  PubMed  Google Scholar 

  24. Kim, S.K., J.Y. Choe, and K.Y. Park. 2016. Enhanced p62 is responsible for mitochondrial pathway-dependent apoptosis and interleukin-1β production at the early phase by monosodium urate crystals in murine macrophage. Inflammation 39: 1603–1616.

    Article  CAS  PubMed  Google Scholar 

  25. Devi, T.S., I. Lee, M. Hüttemann, A. Kumar, K.D. Nantwi, and L.P. Singh. 2012. TXNIP links innate host defense mechanisms to oxidative stress and inflammation in retinal Muller glia under chronic hyperglycemia: implications for diabetic retinopathy. Experimental Diabetes Research 2012: 438238.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seong-Kyu Kim.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Funding Source

This work was supported by the Korean Association of Internal Medicine Research Grant 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choe, JY., Kim, SK. Quercetin and Ascorbic Acid Suppress Fructose-Induced NLRP3 Inflammasome Activation by Blocking Intracellular Shuttling of TXNIP in Human Macrophage Cell Lines. Inflammation 40, 980–994 (2017). https://doi.org/10.1007/s10753-017-0542-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-017-0542-4

KEY WORDS

Navigation