Skip to main content

Advertisement

Log in

Paeonol Inhibits Lipopolysaccharide-Induced HMGB1 Translocation from the Nucleus to the Cytoplasm in RAW264.7 Cells

  • ORIGINAL ARTICLE
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Transport of high-mobility group box 1 (HMGB1), a highly conserved non-histone DNA-binding protein, from the nucleus to the cytoplasm is induced by lipopolysaccharide (LPS). Secretion of HMGB1 appears to be a key lethal factor in sepsis, so it is considered to be a therapeutic target. Previous studies have suggested that paeonol (2′-hydroxy-4′-methoxyacetophenone), an active compound of Paeonia lactiflora Pallas, exerts anti-inflammatory effects. However, the effect of paeonol on HMGB1 is unknown. Here, we investigated the effect of paeonol on the expression, location, and secretion of HMGB1 in LPS-induced murine RAW264.7 cells. ELISA revealed HMGB1 supernatant concentrations of 615 ± 30 ng/mL in the LPS group and 600 ± 45, 560 ± 42, and 452 ± 38 ng/mL in cells treated with 0.2, 0.6, or 1 mM paeonol, respectively, suggesting that paeonol inhibits HMGB1 secretion induced by LPS. Immunohistochemistry and Western blotting revealed that paeonol decreased cytoplasmic HMGB1 and increased nuclear HMGB1. Chromatin immunoprecipitation microarrays suggested that HMGB1 relocation to the nucleus induced by paeonol might depress the action of Janus kinase/signal transducers and activators of transcription, chemokine, and mitogen-activated protein kinase pro-inflammatory signaling pathways. Paeonol was also found to inhibit tumor necrosis factor-α promoter activity in a dose-dependent manner. These results indicate that paeonol has the potential to be developed as a novel HMGB1-targeting therapeutic drug for the treatment of inflammatory diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Goodwin, Graham H., Clive Sanders, and Ernest W. Johns. 1973. A new group of chromatin-associated proteins with a high content of acidic and basic amino acids. European Journal of Biochemistry 38: 14–19.

    Article  CAS  PubMed  Google Scholar 

  2. Wang, H., O. Bloom, M. Zhang, J.M. Vishnubhakat, M. Ombrellino, J. Che, A. Frazier, H. Yang, S. Ivanova, L. Borovikova, K.R. Manogue, E. Faist, E. Abraham, J. Andersson, U. Andersson, P.E. Molina, N.N. Abumrad, A. Sama, and K.J. Tracey. 1999. HMG-1 as a late mediator of endotoxin lethality in mice. Science 285: 248–251.

    Article  CAS  PubMed  Google Scholar 

  3. Lotze, M.T., and K.J. Tracey. 2005. High-mobility group box 1 protein (HMGB1): nuclear weapon in the immune arsenal. Nature Rev Immunol 5: 331–342.

    Article  CAS  Google Scholar 

  4. Andersson, U., and K.J. Tracey. 2011. HMGB1 is a therapeutic target for sterile inflammation and infection. Annual Review of Immunology 29: 139–162.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bae, J.S. 2012. Role of high mobility group box 1 in inflammatory disease: focus on sepsis. Archives of Pharmacal Research 35: 1511–1523.

    Article  CAS  PubMed  Google Scholar 

  6. Li, M., D.F. Carpio, Y. Zheng, P. Bruzzo, V. Singh, F. Ouaaz, R.M. Medzhitov, and A.A. Beg. 2001. An essential role of the NF-kappa B/Toll-like receptor pathway in induction of inflammatory and tissue-repair gene expression by necrotic cells. Journal of Immunology 166: 7128–7135.

    Article  CAS  Google Scholar 

  7. Bonaldi, T., F. Talamo, P. Scaffidi, D. Ferrera, A. Porto, A. Bachi, A. Rubartelli, A. Agresti, and M.E. Bianchi. 2003. Monocytic cells hyperacetylate chromatin protein HMGB1 to redirect it towards secretion. EMBO Journal 22: 5551–5560.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Vande Walle, L., T.D. Kanneganti, and M. Lamkanfi. 2011. HMGB1 release by inflammasomes. Virulence 2: 162–165.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Sundén-Cullberg, J., A. Norrby-Teglund, A. Rouhiainen, H. Rauvala, G. Herman, K.J. Tracey, M.L. Lee, J. Andersson, L. Tokics, and C.J. Treutiger. 2005. Persistent elevation of high mobility group box-1 protein (HMGB1) in patients with severe sepsis and septic shock. Critical Care Medicine 33: 564–573.

    Article  PubMed  Google Scholar 

  10. Ueno, H., T. Matsuda, S. Hashimoto, F. Amaya, Y. Kitamura, M. Tanaka, A. Kobayashi, I. Maruyama, S. Yamada, N. Hasegawa, J. Soejima, H. Koh, and A. Ishizaka. 2004. Contributions of high mobility group box protein in experimental and clinical acute lung injury. American Journal of Respiratory and Critical Care Medicine 170: 1310–1316.

    Article  PubMed  Google Scholar 

  11. van Zoelen, M. A., Laterre, P. F., van Veen. S, Q., van Till J. W., Wittebole, X., Bresser, P., Tanck, M. W., Dugernier, T., Ishizaka, A., Boermeester, M. A., and van der Poll, T. 2007. Systemic and local high mobility group box 1 concentrations during severe infection. e 35: 2799–2804.

  12. Abraham, E., J. Arcaroli, A. Carmody, H. Wang, and K.J. Tracey. 2000. HMG-1 as a mediator of acute lung inflammation. Journal of Immunology 165: 2950–2954.

    Article  CAS  Google Scholar 

  13. Kohno, T., T. Anzai, K. Naito, T. Miyasho, M. Okamoto, H. Yokota, S. Yamada, Y. Maekawa, T. Takahashi, T. Yoshikawa, A. Ishizaka, and S. Ogawa. 2009. Role of high-mobility group box 1 protein in post-infarction healing process and left ventricular remodelling. Cardiovascular Research 81: 565–573.

    Article  CAS  PubMed  Google Scholar 

  14. Kokkola, R., E. Sundberg, A.K. Ulfgren, K. Palmblad, J. Li, H. Wang, L. Ulloa, H. Yang, X.J. Yan, R. Furie, N. Chiorazzi, K.J. Tracey, U. Andersson, and H.E. Harris. 2002. High mobility group box chromosomal protein 1: a novel proinflammatory mediator in synovitis. Arthritis and Rheumatism 46: 2598–2603.

    Article  CAS  PubMed  Google Scholar 

  15. Taniguchi, N., K. Kawahara, K. Yone, T. Hashiguchi, M. Yamakuchi, M. Goto, K. Inoue, S. Yamada, K. Ijiri, S. Matsunaga, T. Nakajima, S. Komiya, and I. Maruyama. 2003. High mobility group box chromosomal protein 1 plays a role in the pathogenesis of rheumatoid arthritis as a novel cytokine. Arthritis and Rheumatism 48: 971–981.

    Article  CAS  PubMed  Google Scholar 

  16. Lamkanfi, M., A. Sarkar, L. Vande Walle, A.C. Vitari, A.O. Amer, M.D. Wewers, K.J. Tracey, T.D. Kanneganti, and V.M. Dixit. 2010. Inflammasome-dependent release of the alarmin HMGB1 in endotoxemia. Journal of Immunology 185: 4385–4392.

    Article  CAS  Google Scholar 

  17. Yang, H., M. Ochani, J. Li, X. Qiang, M. Tanovic, H.E. Harris, S.M. Susarla, L. Ulloa, H. Wang, R. DiRaimo, C.J. Czura, H. Wang, J. Roth, H.S. Warren, M.P. Fink, M.J. Fenton, U. Andersson, and K.J. Tracey. 2004. Reversing established sepsis with antagonists of endogenous high-mobility group box 1. Proceedings of the National Academy of Sciences of the United States of America 101: 296–301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Suda, K., Y. Kitagawa, S. Ozawa, Y. Saikawa, M. Ueda, M. Ebina, S. Yamada, S. Hashimoto, S. Fukata, E. Abraham, I. Maruyama, M. Kitajima, and A. Ishizaka. 2006. Anti-high-mobility group box chromosomal protein 1 antibodies improve survival of rats with sepsis. World Journal of Surgery 30: 1755–1762.

    Article  PubMed  Google Scholar 

  19. Zhang, L.T., Y.M. Yao, J.Q. Lu, X.J. Yan, Y. Yu, and Z.Y. Sheng. 2007. Sodium butyrate prevents lethality of severe sepsis in rats. Shock 27: 672–677.

    Article  CAS  PubMed  Google Scholar 

  20. Zhang, T., M. Xia, Q. Zhan, Q. Zhou, G. Lu, and F. An. 2015. Sodium butyrate reduces organ injuries in mice with severe acute pancreatitis through inhibiting HMGB1 expression. Digestive Diseases and Sciences 60: 1991–1999.

    Article  CAS  PubMed  Google Scholar 

  21. Gong, Q., M.J. Chen, C. Wang, H. Nie, Y.X. Zhang, K.G. Shu, and G. Li. 2014. Sodium butyrate inhibits HMGB1 expression and release and attenuates concanavalin A-induced acute liver injury in mice. Sheng Li Xue Bao 66: 619–624. Chinese.

    CAS  PubMed  Google Scholar 

  22. Wu, A.H., L. He, W. Long, Q. Zhou, S. Zhu, P. Wang, S. Fan, and H. Wang. 2015. Novel mechanisms of herbal therapies for inhibiting HMGB1 secretion or action. Evidence-based Complementary and Alternative Medicine. doi:10.1155/2015/456305.

    Google Scholar 

  23. Nizamutdinova, I.T., H.M. Oh, Y.N. Min, S.H. Park, M.J. Lee, J.S. Kim, M.H. Yean, S.S. Kang, Y.S. Kim, K.C. Chang, and H.J. Kim. 2007. Paeonol suppresses intercellular adhesion molecule-1 expression in tumor necrosis factor-alpha-stimulated human umbilical vein endothelial cells by blocking p38, ERK and nuclear factor-kappaB signaling pathways. International Immunopharmacology 7: 343–350.

    Article  CAS  PubMed  Google Scholar 

  24. Himaya, S.W., B. Ryu, Z.J. Qian, and S.K. Kim. 2012. Paeonol from Hippocampus kuda Bleeler suppressed the neuro-inflammatory responses in vitro via NF-κB and MAPK signaling pathways. Toxicology In Vitro 26: 878–887.

    Article  CAS  PubMed  Google Scholar 

  25. Wu, J., X. Xue, B. Zhang, W. Jiang, H. Cao, R. Wang, D. Sun, and R. Guo. 2016. The protective effects of paeonol against epirubicin-induced hepatotoxicity in 4T1-tumor bearing mice via inhibition of the PI3K/Akt/NF-kB pathway. Chemico-Biological Interactions 244: 1–8.

    Article  CAS  PubMed  Google Scholar 

  26. Zhang, L., L. Tao, T. Shi, F. Zhang, X. Sheng, Y. Cao, S. Zheng, A. Wang, W. Qian, L. Jiang, and Y. Lu. 2015. Paeonol inhibits B16F10 melanoma metastasis in vitro and in vivo via disrupting proinflammatory cytokines-mediated NF-κB and STAT3 pathways. IUBMB Life 67: 778–788.

    Article  CAS  PubMed  Google Scholar 

  27. Jin, X., J. Wang, Z.M. Xia, C.H. Shang, Q.L. Chao, Y.R. Liu, H.Y. Fan, D.Q. Chen, F. Qiu, and F. Zhao. 2016. Anti-inflammatory and anti-oxidative activities of paeonol and its metabolites through blocking MAPK/ERK/p38 signaling pathway. Inflammation 39: 434–446.

    Article  CAS  PubMed  Google Scholar 

  28. Chou, T.C. 2003. Anti-inflammatory and analgesic effects of Paeonol in carrageenan-evoked thermal hyperalgesia. British Journal of Pharmacology 139: 1146–1152.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Fu, P. K., Wu, C. L., Tsai, T. H., and Hsieh, C. L., 2012. Anti-inflammatory and anticoagulative effects of paeonol on LPS-induced acute lung injury in rats. Evid Based Complement Alternat Med. 2012: Doi: 10.1155/2012/837513

  30. Wang, Y.Q., M. Dai, J.C. Zhong, and D.K. Yin. 2012. Paeonol inhibits oxidized low density lipoprotein-induced monocyte adhesion to vascular endothelial cells by inhibiting the mitogen activated protein kinase pathway. Biological and Pharmaceutical Bulletin 35: 767–772.

    Article  CAS  PubMed  Google Scholar 

  31. Huang, H., E.J. Chang, Y. Lee, J.S. Kim, S.S. Kang, and H.H. Kim. 2008. A genome-wide microarray analysis reveals anti-inflammatory target genes of paeonol in macrophages. Inflammation Research 57: 189–198.

    Article  CAS  PubMed  Google Scholar 

  32. Zhu, S., W. Li, M.F. Ward, A.E. Sama, and H. Wang. 2010. High mobility group box 1 protein as a potential drug target for infection- and injury-elicited inflammation. Inflammation & Allergy Drug Targets 9: 60–72.

    Article  PubMed  Google Scholar 

  33. Tu, C.T., Q.Y. Yao, B.L. Xu, and S.C. Zhang. 2012. Curcumin protects against concanavalin a-induced hepatitis in mice through inhibiting the cytoplasmic translocation and expression of high mobility group box 1. Inflammation 36: 206–215.

    Article  Google Scholar 

  34. Lin, C., H.Y. Lin, J.H. Chen, W.P. Tseng, P.Y. Ko, Y.S. Liu, W.L. Yeh, and D.Y. Lu. 2015. Effects of paeonol on anti-neuroinflammatory responses in microglial cells. Int J Sci. 16: 8844–8860.

    CAS  Google Scholar 

  35. Kim, D.C., W. Lee, and J.S. Bae. 2011. Vascular anti-inflammatory effects of curcumin on HMGB1-mediated responses in vitro. Inflammation Research 60: 1161–1168.

    Article  CAS  PubMed  Google Scholar 

  36. Kim, T.H., S.K. Ku, and J.S. Bae. 2012. Anti-inflammatory activities of isorhamnetin-3-O-galactoside against HMGB1-induced inflammatory responses in both HUVECs and CLP-induced septic mice. Journal of Cellular Biochemistry 114: 336–345.

    Article  Google Scholar 

  37. Yang, E.J., W. Lee, S.K. Ku, K.S. Song, and J.S. Bae. 2012. Anti-inflammatory activities of oleanolic acid on HMGB1 activated HUVECs. Food and Chemical Toxicology 50: 1288–1294.

    Article  CAS  PubMed  Google Scholar 

  38. Lee, W., T.H. Kim, S.K. Ku, K.J. Min, H.S. Lee, T.K. Kwon, and J.S. Bae. 2012. Barrier protective effects of withaferin A in HMGB1-induced inflammatory responses in both cellular and animal models. Toxicology and Applied Pharmacology 262: 91–98.

    Article  CAS  PubMed  Google Scholar 

  39. Lee, W., S.K. Ku, J.W. Bae, and J.S. Bae. 2012. Inhibitory effects of lycopene on HMGB1-mediated pro-inflammatory responses in both cellular and animal models. Food and Chemical Toxicology 50: 1826–1833.

    Article  CAS  PubMed  Google Scholar 

  40. Kim, T.H., S.K. Ku, T. Lee, and J.S. Bae. 2012. Vascular barrier protective effects of phlorotannins on HMGB1-mediated proinflammatory responses in vitro and in vivo. Food and Chemical Toxicology 50: 2188–2195.

    Article  CAS  PubMed  Google Scholar 

  41. Mollica, L., F. deMarchis, A. Spitaleri, C. Dallacosta, D. Pennacchini, M. Zamai, A. Agrest, L. Trisciuoglio, G, Musco, and M.E. Bianchi. 2007. Glycyrrhizin binds to high-mobility group box 1 protein and inhibits its cytokine activities. Chemistry and Biology 14: 431–441.

    Article  CAS  PubMed  Google Scholar 

  42. Yamaguchi, H., K. Kidachi, Noshita T. Kamiie, and H. Umetsu. 2012. Structural insight into the ligand-receptor interaction between glycyrrhetinic acid (GA) and the high-mobility group protein B1 (HMGB1)-DNA Complex. Bioinformation 8: 1147–1153.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Li, W., J. Li, A.E. Sama, and H. Wang. 2013. Carbenoxolone blocks endotoxin-induced protein kinase R (PKR) activation and high mobility group box 1 (HMGB1) release. Molecular Medicine 19: 203–211.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Li, W., Ashok, M., Li, J., Yang, H., Sama, AE., and Wang, H., 2007. A major ingredient of green tea rescues mice from lethal sepsis partly by inhibiting HMGB1. PloS One e1153.

  45. Li, W., J. Li, M. Ashok, R. Wu, D. Chen, L. Yang, H. Yang, K.J. Tracey, P. Wang, A.E. Sama, and H. Wang. 2007. A cardiovascular drug rescues mice from lethal sepsis by selectively attenuating a late-acting proinflammatory mediator, high mobility group box 1. The Journal of Immunology 178: 3856–3864.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lau, C.H., C.M. Chan, Y.W. Chan, K.M. Lau, T.W. Lau, F.C. Lam, W.T. Law, C.T. Che, P.C. Leung, K.P. Fung, Y.Y. Ho, and C.B. Lau. 2007. Pharmacological investigations of the anti-diabetic effect of Cortex Moutan and its active component paeonol. Phytomedicine 14: 778–784.

    Article  CAS  PubMed  Google Scholar 

  47. Mi, X.J., S.W. Chen, W.J. Wang, R. Wang, Y.J. Zhang, W.J. Li, and Y.L. Li. 2005. Anxiolytic-like effect of paeonol in mice. Pharmacology, Biochemistry and Behavior 81: 683–687.

    Article  CAS  PubMed  Google Scholar 

  48. Li, N., L.L. Fan, G.P. Sun, X.A. Wan, Z.G. Wang, Q. Wu, and H. Wang. 2010. Paeonol inhibits tumor growth in gastric cancer in vitro and in vivo. World Journal of Gastroenterology 16: 4483–4490.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kim, S.A., H.J. Lee, K.S. Ahn, H.J. Lee, E.O. Lee, K.S. Ahn, S.H. Choi, S.J. Jung, J.Y. Kim, N. Baek, and S.H. Kim. 2009. Paeonol exerts anti-angiogenic and anti-metastatic activities through downmodulation of Akt activation and inactivation of matrix metalloproteinases. Biological and Pharmaceutical Bulletin 32: 1142–1147.

    Article  CAS  PubMed  Google Scholar 

  50. Chen, Y., F. Qiao, Y. Zhao, Y. Wang, and G. Liu. 2015. HMGB1 is activated in type 2 diabetes mellitus patients and in mesangial cells in response to high glucose. International Journal of Clinical and Experimental Pathology 8: 6683–6691.

    PubMed  PubMed Central  Google Scholar 

  51. Wu, T.Y., L. Liu, W. Zhang, Y. Zhang, Y.Z. Liu, X.L. Shen, H. Gong, Y.Y. Yang, X.Y. Bi, C.L. Jiang, and Y.X. Wang. 2015. High-mobility group box-1 was released actively and involved in LPS induced depressive-like behavior. Journal of Psychiatric Research 64: 99–106.

    Article  PubMed  Google Scholar 

  52. Antón, M., F. Alén, R. Gómez de Heras, A. Serrano, F.J. Pavón, J.C. Leza, B. García-Bueno, F. Rodríguez de Fonseca, and L. Orio. 2016. Oleoylethanolamide prevents neuroimmune HMGB1/TLR4/NF-kB danger signaling in rat frontal cortex and depressive-like behavior induced by ethanol binge administration. Addict Biol Doi. doi:10.1111/adb.

    Google Scholar 

  53. Sharma, S., Evans, A., and Hemers, E., 2016. Mesenchymal-epithelial signalling in tumour microenvironment: role of high-mobility group Box 1. Cell Tissue Res.

  54. Ni, P., Y. Zhang, Y. Liu, X. Lin, X. Su, H. Lu, H. Shen, W. Xu, H. Xu, and Z. Su. 2015. HMGB1 silence could promote MCF-7 cell apoptosis and inhibit invasion and metastasis. International Journal of Clinical and Experimental Pathology 8: 15940–15946.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (grant nos. 81072908, 81173377, and 81273962) and Guangdong Provincial Science & Technology Project No. 2009B030801283.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Li.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and animal rights and informed consent

This article does not contain any studies with human participants or animals performed by any of the authors.

ELECTRONIC SUPPLEMENTARY MATERIAL

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 294 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lei, H., Wen, Q., Li, H. et al. Paeonol Inhibits Lipopolysaccharide-Induced HMGB1 Translocation from the Nucleus to the Cytoplasm in RAW264.7 Cells. Inflammation 39, 1177–1187 (2016). https://doi.org/10.1007/s10753-016-0353-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-016-0353-z

KEY WORDS

Navigation