Skip to main content
Log in

Sodium Butyrate Reduces Organ Injuries in Mice with Severe Acute Pancreatitis Through Inhibiting HMGB1 Expression

  • Original Article
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Objective

The present study was designed to evaluate the effect of sodium butyrate on pancreas damage and to investigate the role of high-mobility group box-1 (HMGB1) and nuclear factor-κB (NF-κB) in the development of severe acute pancreatitis (SAP) in a mouse model.

Methods

The SAP model was established by intraperitoneal injection of two doses of 20 % L-2 arginine (200 mg/g). Female Sprague–Dawley mice were randomly allocated into three groups (n = 48/group): the control, untreated SAP, and sodium butyrate-treated SAP groups. The animals were euthanized at 0, 12, 24, and 48 h after the establishment of the SAP. Histopathology of the pancreas was performed, and the NF-κB levels were determined by immunohistochemistry. The serum levels of tumor necrosis factor (TNFα), interleukin-6 (IL-6), and HMGB1 were measured by ELISA. The HMGB1 mRNA levels were determined by qRT-PCR.

Results

The sodium butyrate-treated SAP animals showed significantly improved pancreas histopathology and lower serum amylase levels than the untreated SAP animals. In the SAP group, the mRNA levels of HMGB1 were remarkably increased at the 12 h, peaked at 24 h, and remained at a high level up to 48 h after L-2 arginine injection. The levels of TNFα and IL-6 were decreased at 48 h. Treatment with sodium butyrate reduced the pathological lesions, the serum levels of HMGB1, TNFα, and IL-6, the HMGB1 mRNA levels, and NF-κB activity.

Conclusion

Sodium butyrate inhibits the NF-κB activation and reduces pancreas injury in SAP through the modulation of HMGB1 and other inflammatory cytokine responses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Luan ZG, Zhang H, Ma XC, Zhang C, Guo RX. Role of high-mobility group box 1 protein in the pathogenesis of intestinal barrier injury in rats with severe acute pancreatitis. Pancreas. 2010;39:216–223.

    Article  CAS  PubMed  Google Scholar 

  2. Pereda J, Sabater L, Aparisi L, et al. Interaction between cytokines and oxidative stress in acute pancreatitis. Curr Med Chem. 2006;13:2775–2787.

    Article  CAS  PubMed  Google Scholar 

  3. Felderbauer P, Muller C, Bulut K, et al. Pathophysiology and treatment of acute pancreatitis: new therapeutic targets—a ray of hope? Basic Clin Pharmacol Toxicol. 2005;97:342–350.

    Article  CAS  PubMed  Google Scholar 

  4. Kylanpaa L, Rakonczay Z Jr, O’Reilly DA. The clinical course of acute pancreatitis and the inflammatory mediators that drive it. Int J Inflamm. 2012;2012:360685.

    Article  Google Scholar 

  5. Ulloa L, Messmer D. High-mobility group box 1 (HMGB1) protein: friend and foe. Cytokine Growth Factor Rev. 2006;17:189–201.

    Article  CAS  PubMed  Google Scholar 

  6. Bustin M. Regulation of DNA-dependent activities by the functional motifs of the high-mobility-group chromosomal proteins. Mol Cell Biol. 1999;19:5237–5246.

    CAS  PubMed Central  PubMed  Google Scholar 

  7. Wang H, Bloom O, Zhang M, et al. HMG-1 as a late mediator of endotoxin lethality in mice. Science. 1999;285:248–251.

    Article  CAS  PubMed  Google Scholar 

  8. Xu H, Ye X, Steinberg H, Liu SF. Selective blockade of endothelial NF-kappaB pathway differentially affects systemic inflammation and multiple organ dysfunction and injury in septic mice. J Pathol. 2010;220:490–498.

    CAS  PubMed  Google Scholar 

  9. Hagiwara S, Iwasaka H, Hidaka S, Hasegawa A, Noguchi T. Neutrophil elastase inhibitor (sivelestat) reduces the levels of inflammatory mediators by inhibiting NF-kB. Inflamm Res. 2009;58:198–203.

    Article  CAS  PubMed  Google Scholar 

  10. Yin L, Laevsky G, Giardina C. Butyrate suppression of colonocyte NF-kappa B activation and cellular proteasome activity. J Biol Chem. 2001;276:44641–44646.

    Article  CAS  PubMed  Google Scholar 

  11. Sims CA, Wattanasirichaigoon S, Menconi MJ, Ajami AM, Fink MP. Ringer’s ethyl pyruvate solution ameliorates ischemia/reperfusion-induced intestinal mucosal injury in rats. Crit Care Med. 2001;29:1513–1518.

    Article  CAS  PubMed  Google Scholar 

  12. Ulloa L, Ochani M, Yang H, et al. Ethyl pyruvate prevents lethality in mice with established lethal sepsis and systemic inflammation. Proc Natl Acad Sci USA. 2002;99:12351–12356.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Yang R, Gallo DJ, Baust JJ, et al. Ethyl pyruvate modulates inflammatory gene expression in mice subjected to hemorrhagic shock. Am J Physiol Gastrointest Liver Physiol. 2002;283:G212–G221.

    Article  CAS  PubMed  Google Scholar 

  14. Zhu CY, Zhao HF, et al. Preparation and evaluation of a new type model of severe acute pancreatitis in mice. J Clin Rehabil Tissue Eng Res. 2012;16:7861–7865.

    CAS  Google Scholar 

  15. Kang R, Zhang Q, Hou W, et al. Intracellular Hmgb1 inhibits inflammatory nucleosome release and limits acute pancreatitis in mice. Gastroenterology. 2014;146:1097–1107.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Schmidt J, Rattner DW, Lewandrowski K, et al. A better model of acute pancreatitis for evaluating therapy. Ann Surg. 1992;215:44–56.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Luan ZG, Zhang XJ, Yin XH, et al. Downregulation of HMGB1 protects against the development of acute lung injury after severe acute pancreatitis. Immunobiology. 2013;218:1261–1270.

    Article  CAS  PubMed  Google Scholar 

  18. Zhang ZW, Zhang QY, Zhou MT, et al. Antioxidant inhibits HMGB1 expression and reduces pancreas injury in rats with severe acute pancreatitis. Dig Dis Sci. 2010;55:2529–2536. doi:10.1007/s10620-009-1073-0.

    Article  CAS  PubMed  Google Scholar 

  19. Fiuza C, Bustin M, Talwar S, et al. Inflammation-promoting activity of HMGB1 on human microvascular endothelial cells. Blood. 2003;101:2652–2660.

    Article  CAS  PubMed  Google Scholar 

  20. Park JS, Gamboni-Robertson F, He Q, et al. High mobility group box 1 protein interacts with multiple Toll-like receptors. Am J Physiol Cell Physiol. 2006;290:C917–C924.

    Article  CAS  PubMed  Google Scholar 

  21. Yu M, Wang H, Ding A, et al. HMGB1 signals through toll-like receptor (TLR) 4 and TLR2. Shock.. 2006;26:174–179.

    Article  CAS  PubMed  Google Scholar 

  22. Gong Q, Xu JF, Yin H, Liu SF, Duan LH, Bian ZL. Protective effect of antagonist of high-mobility group box 1 on lipopolysaccharide-induced acute lung injury in mice. Scand J Immunol. 2009;69:29–35.

    Article  CAS  PubMed  Google Scholar 

  23. Du XG, Chen XM, Gan H, Li ZR, Wen YJ, Wang XC. Continuous blood purification ameliorates RhoA-mediated endothelial permeability in severe acute pancreatitis patients with lung injury. Int J Artif Organs. 2011;34:348–356.

    Article  CAS  PubMed  Google Scholar 

  24. Luan ZG, Zhang H, Ma XC, Zhang C, Guo RX. Therapeutic treatment with ethyl pyruvate attenuates the severity of liver injury in rats with severe acute pancreatitis. Pancreas. 2012;41:729–737.

    CAS  PubMed  Google Scholar 

  25. Qiao YL, Qian JM, Wang FR, Ma ZY, Wang QW. Butyrate protects liver against ischemia reperfusion injury by inhibiting nuclear factor kappa B activation in Kupffer cells. J Surg Res. 2014;187:653–659.

    Article  CAS  PubMed  Google Scholar 

  26. Hinnebusch BF, Meng S, Wu JT, Archer SY, Hodin RA. The effects of short-chain fatty acids on human colon cancer cell phenotype are associated with histone hyperacetylation. J Nutr. 2002;132:1012–1017.

    CAS  PubMed  Google Scholar 

  27. Bell CW, Jiang W, Reich CF 3rd, Pisetsky DS. The extracellular release of HMGB1 during apoptotic cell death. Am J Physiol Cell Physiol. 2006;291:C1318–C1325.

    Article  CAS  PubMed  Google Scholar 

  28. Ionescu CV, Cepinskas G, Savickiene J, Sandig M, Kvietys PR. Neutrophils induce sequential focal changes in endothelial adherens junction components: role of elastase. Microcirculation. 2003;10:205–220.

    Article  CAS  PubMed  Google Scholar 

  29. Turut H, Kurutas EB, Bulbuloglu E, et al. Zinc aspartate alleviates lung injury induced by intestinal ischemia-reperfusion in rats. J Surg Res. 2009;151:62–67.

    Article  CAS  PubMed  Google Scholar 

  30. Harada T, Moore BA, Yang R, Cruz RJ Jr, Delude RL, Fink MP. Ethyl pyruvate ameliorates ileus induced by bowel manipulation in mice. Surgery. 2005;138:530–537.

    Article  PubMed  Google Scholar 

  31. Sawa H, Ueda T, Takeyama Y, et al. Blockade of high mobility group box-1 protein attenuates experimental severe acute pancreatitis. World J Gastroenterol. 2006;12:7666–7670.

    CAS  PubMed Central  PubMed  Google Scholar 

  32. La Rosa G, Cardali S, Genovese T, et al. Inhibition of the nuclear factor-kappaB activation with pyrrolidine dithiocarbamate attenuating inflammation and oxidative stress after experimental spinal cord trauma in rats. J Neurosurg Spine. 2004;1:311–321.

    Article  PubMed  Google Scholar 

  33. Xie X, Wang L, Gong F, et al. Intracellular Staphylococcus aureus-induced NF-κB activation and proinflammatory responses of P815 cells are mediated by NOD2. J Huazhong Univ Sci Technol Med Sci. 2012;32:317–323.

    Article  CAS  PubMed  Google Scholar 

  34. Rakonczay Z Jr, Hegyi P, Takacs T, McCarroll J, Saluja AK. The role of NF-kappaB activation in the pathogenesis of acute pancreatitis. Gut. 2008;57:259–267.

    Article  CAS  PubMed  Google Scholar 

  35. Luan ZG, Zhang H, Yang PT, Ma XC, Zhang C, Guo RX. HMGB1 activates nuclear factor-kappaB signaling by RAGE and increases the production of TNF-alpha in human umbilical vein endothelial cells. Immunobiology. 2010;215:956–962.

    Article  CAS  PubMed  Google Scholar 

  36. Ohashi S, Nishio A, Nakamura H, et al. Protective roles of redox-active protein thioredoxin-1 for severe acute pancreatitis. Am J Physiol Gastrointest Liver Physiol. 2006;290:G772–G781.

    Article  CAS  PubMed  Google Scholar 

  37. Crestanello JA, Lingle DM, Millili J, Whitman GJ. Pyruvate improves myocardial tolerance to reperfusion injury by acting as an antioxidant: a chemiluminescence study. Surgery. 1998;124:92–99.

    Article  CAS  PubMed  Google Scholar 

  38. Zhou M, Wu R, Dong W, Leong J, Wang P. Accelerated apoptosis contributes to aging-related hyperinflammation in endotoxemia. Int J Mol Med. 2010;25:929–935.

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Conflict of interest

The authors claim no conflicts of interest regarding the study or publication of this report.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Xia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, T., Xia, M., Zhan, Q. et al. Sodium Butyrate Reduces Organ Injuries in Mice with Severe Acute Pancreatitis Through Inhibiting HMGB1 Expression. Dig Dis Sci 60, 1991–1999 (2015). https://doi.org/10.1007/s10620-015-3586-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-015-3586-z

Keywords

Navigation