Skip to main content

Advertisement

Log in

The Neuroprotective Effect of Glycyrrhizic Acid on an Experimental Model of Focal Cerebral Ischemia in Rats

  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Cerebral ischemia is still one of the most important topics in neurosciences. Our study aimed to investigate the neuroprotective and anti-oxidant effects of glycyrrhizic acid on focal cerebral ischemia in rats. Twenty-four rats were divided equally into three groups. A middle cerebral artery occlusion model was performed in this study where sham and glycyrrhizic acid were administered intraperitoneally following middle cerebral artery occlusion. Group I was evaluated as control. Malondialdehyde (MDA), superoxide dismutase (SOD), and nuclear respiratory factor-1 (NRF1) levels were analyzed biochemically on the right cerebral hemisphere, while ischemic histopathological studies were completed to investigate the anti-oxidant status. Biochemical results showed that SOD and NRF1 levels were significantly increased in the glycyrrhizic acid group compared with the sham group while MDA levels were significantly decreased. On histopathological examination, cerebral edema, vacuolization, degeneration, and destruction of neurons were decreased in the glycyrrhizic acid group compared with the sham group. Cerebral ischemia was attenuated by glycyrrhizic acid administration. These observations indicate that glycyrrhizic acid may have potential as a therapeutic agent in cerebral ischemia by preventing oxidative stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

REFERENCES

  1. Amantea, D., G. Nappi, G. Bernardi, G. Bagetta, and M.T. Corasaniti. 2009. Post-ischemic brain damage: pathophysiology and role of inflammatory mediators. The FEBS Journal 276: 13–26.

    Article  CAS  PubMed  Google Scholar 

  2. Harada, S. 2005. The broad anti-viral agent glycyrrhizin directly modulates the fluidity of plasma membrane and HIV-1 envelope. The Biochemical Journal 392: 191–199.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Kabra, D.G., M. Thiyagarajan, C.L. Kaul, and S.S. Sharma. 2004. Neuroprotective effect of 4-amino-1,8-napthalimide, a poly(ADP ribose) polymerase inhibitor in middle cerebral artery occlusion-induced focal cerebral ischemia in rat. Brain Research Bulletin 62: 425–433.

    Article  CAS  PubMed  Google Scholar 

  4. Rasool, M., J. Iqbal, A. Malik, et al. 2014. Hepatoprotective effects of Silybum marianum (Silymarin) and Glycyrrhiza glabra (Glycyrrhizin) in combination: a possible synergy. Evidence Based Complementary Alternative Medicine 2014: 597–641.

    Google Scholar 

  5. Armanini, D., C.B. De Palo, M.J. Mattarello, et al. 2003. Effect of licorice on the reduction of body fat mass in healthy subjects. Journal of Endocrinological Investigation 26: 646–650.

    Article  CAS  PubMed  Google Scholar 

  6. Fenwick, G.R., J. Lutomski, and C. Nieman. 1990. Liquorice, Glycyrrhiza glabra L.—composition, uses and analysis. Food Chemistry 38: 119–143.

    Article  CAS  Google Scholar 

  7. Ma, S.K., E.H. Bae, I.J. Kim, et al. 2009. Increased renal expression of nitric oxide synthase and atrial natriuretic peptide in rats with glycyrrhizic-acid-induced hypertension. Phytotherapy research : PTR 23: 206–211.

    Article  CAS  PubMed  Google Scholar 

  8. Barone, F.C., and G.Z. Feuerstein. 1999. Inflammatory mediators and stroke: new opportunities for novel therapeutics. Journal of Cerebral Blood Flow and Metabolism 19: 819–834.

    Article  CAS  PubMed  Google Scholar 

  9. Rackova, L., V. Jancinova, M. Petrikova, et al. 2007. Mechanism of anti-inflammatory action of liquorice extract and glycyrrhizin. Natural Product Research 21: 1234–1241.

    Article  CAS  PubMed  Google Scholar 

  10. Kim, S.W., Y. Jin, J.H. Shin, et al. 2012. Glycyrrhizic acid affords robust neuroprotection in the postischemic brain via anti-inflammatory effect by inhibiting HMGB1 phosphorylation and secretion. Neurobiology of Disease 46: 147–156.

    Article  CAS  PubMed  Google Scholar 

  11. Park, H.Y., S.H. Park, H.K. Yoon, M.J. Han, and D.H. Kim. 2004. Anti-allergic activity of 18beta-glycyrrhetinic acid-3-O-beta-D-glucuronide. Archives of Pharmacal Research 27: 57–60.

    Article  CAS  PubMed  Google Scholar 

  12. Smolarczyk, R., T. Cichon, S. Matuszczak, et al. 2012. The role of glycyrrhizin, an inhibitor of HMGB1 protein, in anticancer therapy. Archivum Immunologiae et Therapiae Experimentalis 60: 391–399.

    Article  CAS  PubMed  Google Scholar 

  13. Li, X.L., A.G. Zhou, L. Zhang, and W.J. Chen. 2011. Antioxidant status and immune activity of glycyrrhizin in allergic rhinitis mice. International Journal of Molecular Sciences 12: 905–916.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Orazizadeh, M., F. Fakhredini, E. Mansouri, and L. Khorsandi. 2014. Effect of glycyrrhizic acid on titanium dioxide nanoparticles-induced hepatotoxicity in rats. Chemico-Biological Interactions 220C: 214–221.

    Article  Google Scholar 

  15. Hata, R., G. Mies, C. Wiessner, et al. 1998. A reproducible model of middle cerebral artery occlusion in mice: hemodynamic, biochemical, and magnetic resonance imaging. Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism 18: 367–375.

    Article  CAS  Google Scholar 

  16. Fakhari, S., K. Abdolmohammadi, Y. Panahi, et al. 2014. Glycyrrhizin attenuates tissue injury and reduces neutrophil accumulation in experimental acute pancreatitis. International Journal of Clinical and Experimental Pathology 7: 101–109.

    PubMed Central  PubMed  Google Scholar 

  17. Bederson, J.B., L.H. Pitts, M. Tsuji, et al. 1986. Rat middle cerebral artery occlusion: evaluation of the model and development of a neurologic examination. Stroke; a journal of cerebral circulation 17: 472–476.

    Article  CAS  PubMed  Google Scholar 

  18. Lowry, O.H., N.J. Rosebrough, A.L. Farr, and R.J. Randall. 1951. Protein measurement with the Folin phenol reagent. The Journal of Biological Chemistry 193: 265–275.

    CAS  PubMed  Google Scholar 

  19. Sun, Y., L.W. Oberley, and Y. Li. 1988. A simple method for clinical assay of superoxide dismutase. Clinical Chemistry 34: 497–500.

    CAS  PubMed  Google Scholar 

  20. Buege, J.A., and S.D. Aust. 1978. Microsomal lipid peroxidation. Methods in Enzymology 52: 302–310.

    Article  CAS  PubMed  Google Scholar 

  21. Gutsaeva, D.R., M.S. Carraway, H.B. Suliman, et al. 2008. Transient hypoxia stimulates mitochondrial biogenesis in brain subcortex by a neuronal nitric oxide synthase-dependent mechanism. The Journal of neuroscience : the official journal of the Society for Neuroscience 28: 2015–2024.

    Article  CAS  Google Scholar 

  22. Yin, W., A.P. Signore, M. Iwai, et al. 2008. Rapidly increased neuronal mitochondrial biogenesis after hypoxic-ischemic brain injury. Stroke; a journal of cerebral circulation 39: 3057–3063.

    Article  PubMed Central  PubMed  Google Scholar 

  23. Pascual, O., S. Ben Achour, P. Rostaing, A. Triller, and A. Bessis. 2012. Microglia activation triggers astrocyte-mediated modulation of excitatory neurotransmission. Proceedings of the National Academy of Sciences of the United States of America 109: E197–205.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Shamsa, F., K. Ohtsuki, E. Hasanzadeh, and S.H. Rezazadeh. 2010. The antiinflammatory and anti-viral effects of an ethnic medicine: glycyrrhizin. J Med Plants 9: 1–28.

    CAS  Google Scholar 

  25. Cirak, B., N. Rousan, A. Kocak, et al. 1999. Melatonin as a free radical scavenger in experimental head trauma. Pediatric Neurosurgery 31: 298–301.

    Article  CAS  PubMed  Google Scholar 

  26. Islekel, S., H. Islekel, G. Guner, and N. Ozdamar. 1999. Alterations in superoxide dismutase, glutathione peroxidase and catalase activities in experimental cerebral ischemia-reperfusion. Research in experimental medicine. Zeitschrift fur die gesamte experimentelle Medizin einschliesslich experimenteller Chirurgie 199: 167–176.

    Article  CAS  PubMed  Google Scholar 

  27. Kumari, S., L. Anderson, S. Farmer, S.L. Mehta, and P.A. Li. 2012. Hyperglycemia alters mitochondrial fission and fusion proteins in mice subjected to cerebral ischemia and reperfusion. Translational stroke research 3: 296–304.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Abas, F., T. Alkan, B. Goren, et al. 2010. Neuroprotective effects of postconditioning on lipid peroxidation and apoptosis after focal cerebral ischemia/reperfusion injury in rats. Turkish Neurosurgery 20: 1–8.

    PubMed  Google Scholar 

Download references

Conflict of Interest

The authors declare no conflicts of interest.

Financial Support

No financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tarık Akman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akman, T., Guven, M., Aras, A.B. et al. The Neuroprotective Effect of Glycyrrhizic Acid on an Experimental Model of Focal Cerebral Ischemia in Rats. Inflammation 38, 1581–1588 (2015). https://doi.org/10.1007/s10753-015-0133-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-015-0133-1

KEY WORDS

Navigation