Skip to main content
Log in

Effects of Mouse Hepcidin 1 Treatment on Osteoclast Differentiation and Intracellular Iron Concentration

  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Hepcidin is a key player in the regulation of mammalian iron homeostasis. Because iron overload may be one of the causes of osteoporosis, hepcidin may have therapeutic potential for osteoporosis patients. However, the effects of hepcidin on bone metabolism are not fully clear. We recently found that hepcidin can increase intracellular iron and calcium levels and promote mineralization in osteoblasts. The present study was designed to evaluate the effects of hepcidin on osteoclasts. Our results showed that mouse hepcidin 1 (MH1) can increase the number of TRAP-positive MNCs concomitant in both bone marrow-derived macrophages (BMMs) and RAW264.7 cells and upregulate mRNA levels of TRAP, cathepsin K, and MMP-9 and increase TRAP-5b protein secretion in RAW264.7 cells. Moreover, MH1 can downregulate the level of FPN1 protein and increase intracellular iron in RAW 264.7 cells. Therefore, we conclude that MH1 can significantly facilitate osteoclast differentiation in vitro. The mechanism behind accelerated differentiation may be associated with increased levels of intracellular iron. These findings may facilitate understanding of the effects of hepcidin on bone metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

MH1:

Mouse hepcidin 1

BMMs:

Bone marrow-derived macrophages

M-CSF:

Macrophage colony-stimulating factor

RANKL:

Receptor Activator of Nuclear Factor κ B Ligand

TRAP:

Tartrate-resistant acid phosphatase

CTK:

Cathepsin K

MMP-9:

Matrix metalloproteinase 9

RT-PCR:

Reverse transcriptase polymerase chain reaction

FPN1:

Ferroportin 1

CLSM:

Confocal laser scanning microscope

References

  1. Pietrangelo, A. 2011. Hepcidin in human iron disorders: therapeutic implications. Journal of Hepatology 54: 173–181. doi:10.1016/j.jhep.2010.08.004.

    Article  CAS  PubMed  Google Scholar 

  2. Parrow, N.L., S. Gardenghi, and S. Rivella. 2011. Prospects for a hepcidin mimic to treat beta-thalassemia and hemochromatosis. Expert Review of Hematology 4: 233–235. doi:10.1586/ehm.11.22.

    Article  PubMed  Google Scholar 

  3. Weinberg, E.D. 2006. Iron loading: a risk factor for osteoporosis. Biometals: an international journal on the role of metal ions in biology, biochemistry, and medicine 19: 633–635. doi:10.1007/s10534-006-9000-8.

    Article  CAS  Google Scholar 

  4. Weinberg, E.D. 2008. Role of iron in osteoporosis. Pediatric Endocrinology Reviews 6(Suppl 1): 81–85.

    PubMed  Google Scholar 

  5. Jian, J., E. Pelle, and X. Huang. 2009. Iron and menopause: does increased iron affect the health of postmenopausal women? Antioxidants & Redox Signaling 11: 2939–2943. doi:10.1089/ARS.2009.2576.

    Article  CAS  Google Scholar 

  6. Li, G.F., Y.Z. Pan, P. Sirois, K. Li, and Y.J. Xu. 2012. Iron homeostasis in osteoporosis and its clinical implications. Osteoporosis international: a journal established as result of cooperation between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA. doi:10.1007/s00198-012-1982-1.

    Google Scholar 

  7. Xi Huang (2010) Treatment of osteoporosis in peri- and post-menopausal women with hepcidin. United States Patent Application Publication. No: US 2010/0204122 A1

  8. Lou, D.Q., G. Nicolas, J.C. Lesbordes, L. Viatte, G. Grimber, M.F. Szajnert, A. Kahn, and S. Vaulont. 2004. Functional differences between hepcidin 1 and 2 in transgenic mice. Blood 103: 2816–2821. doi:10.1182/blood-2003-07-2524 2003-07-2524.

    Article  CAS  PubMed  Google Scholar 

  9. Ganz, T. 2005. Cellular iron: ferroportin is the only way out. Cell Metabolism 1: 155–157. doi:10.1016/j.cmet.2005.02.005.

    Article  CAS  PubMed  Google Scholar 

  10. Rice, A.E., M.J. Mendez, C.A. Hokanson, D.C. Rees, and P.J. Bjorkman. 2009. Investigation of the biophysical and cell biological properties of ferroportin, a multipass integral membrane protein iron exporter. Journal of Molecular Biology 386: 717–732. doi:10.1016/j.jmb.2008.12.063.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Nemeth, E., M.S. Tuttle, J. Powelson, M.B. Vaughn, A. Donovan, D.M. Ward, T. Ganz, and J. Kaplan. 2004. Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization. Science 306: 2090–2093. doi:10.1126/science.1104742.

    Article  CAS  PubMed  Google Scholar 

  12. Abboud, S., and D.J. Haile. 2000. A novel mammalian iron-regulated protein involved in intracellular iron metabolism. The Journal of Biological Chemistry 275: 19906–19912. doi:10.1074/jbc.M000713200.

    Article  CAS  PubMed  Google Scholar 

  13. Donovan, A., A. Brownlie, Y. Zhou, J. Shepard, S.J. Pratt, J. Moynihan, B.H. Paw, A. Drejer, B. Barut, A. Zapata, T.C. Law, C. Brugnara, S.E. Lux, G.S. Pinkus, J.L. Pinkus, P.D. Kingsley, J. Palis, M.D. Fleming, N.C. Andrews, and L.I. Zon. 2000. Positional cloning of zebrafish ferroportin1 identifies a conserved vertebrate iron exporter. Nature 403: 776–781. doi:10.1038/35001596.

    Article  CAS  PubMed  Google Scholar 

  14. McKie, A.T., P. Marciani, A. Rolfs, K. Brennan, K. Wehr, D. Barrow, S. Miret, A. Bomford, T.J. Peters, F. Farzaneh, M.A. Hediger, M.W. Hentze, and R.J. Simpson. 2000. A novel duodenal iron-regulated transporter, IREG1, implicated in the basolateral transfer of iron to the circulation. Molecular Cell 5: 299–309.

    Article  CAS  PubMed  Google Scholar 

  15. Ge, X.H., Q. Wang, Z.M. Qian, L. Zhu, F. Du, W.H. Yung, L. Yang, and Y. Ke. 2009. The iron regulatory hormone hepcidin reduces ferroportin 1 content and iron release in H9C2 cardiomyocytes. The Journal of Nutritional Biochemistry 20: 860–865. doi:10.1016/j.jnutbio.2008.07.014.

    Article  CAS  PubMed  Google Scholar 

  16. Xu, Y., W. Zhang, P. Zhang, L. Xiao, A. Wang, P. Sirois, and K. Li. 2012. Downregulation of ferroportin 1 expression in hFOB1.19 osteoblasts by hepcidin. Inflammation 35: 1058–1061. doi:10.1007/s10753-011-9411-8.

    Article  CAS  PubMed  Google Scholar 

  17. Zhang, P., Y.J. Xu, D.Y. Zhao, Y. Ma, L. Xiao, Y.S. Feng, B.C. Du, Z.M. Qian, and K. Li. 2010. Increased intracellular iron and mineralization of cultured hFOB 1.19 cells following hepcidin activation through ferroportin-1. Saudi Medical Journal 31: 1303–1308.

    PubMed  Google Scholar 

  18. Li, G.F., Y.J. Xu, Y.F. He, B.C. Du, P. Zhang, D.Y. Zhao, C. Yu, C.H. Qin, and K. Li. 2012. Effect of hepcidin on intracellular calcium in human osteoblasts. Molecular and Cellular Biochemistry 366: 169–174. doi:10.1007/s11010-012-1294-y.

    Article  CAS  PubMed  Google Scholar 

  19. Xu, Y., G. Li, B. Du, P. Zhang, L. Xiao, P. Sirois, and K. Li. 2011. Hepcidin increases intracellular Ca2+ of osteoblast hFOB1.19 through L-type Ca2+ channels. Regulatory Peptides 172: 58–61. doi:10.1016/j.regpep.2011.08.009.

    Article  CAS  PubMed  Google Scholar 

  20. Huh, Y.J., J.M. Kim, H. Kim, H. Song, H. So, S.Y. Lee, S.B. Kwon, H.J. Kim, H.H. Kim, S.H. Lee, Y. Choi, S.C. Chung, D.W. Jeong, and B.M. Min. 2006. Regulation of osteoclast differentiation by the redox-dependent modulation of nuclear import of transcription factors. Cell Death and Differentiation 13(7): 1138–1146. doi:10.1038/sj.cdd.4401793.

    Article  CAS  PubMed  Google Scholar 

  21. Das, S.K., R. Ren, T. Hashimoto, and K. Kanazawa. 2010. Fucoxanthin induces apoptosis in osteoclast-like cells differentiated from RAW264.7 cells. Journal of Agricultural and Food Chemistry 58: 6090–6095. doi:10.1021/jf100303k.

    Article  CAS  PubMed  Google Scholar 

  22. Kirstein, B., T.J. Chambers, and K. Fuller. 2006. Secretion of tartrate-resistant acid phosphatase by osteoclasts correlates with resorptive behavior. Journal of Cellular Biochemistry 98: 1085–1094. doi:10.1002/jcb.20835.

    Article  CAS  PubMed  Google Scholar 

  23. Linsuwanont, B., Y. Takagi, K. Ohya, and H. Shimokawa. 2002. Localization of cathepsin K in bovine odontoclasts during deciduous tooth resorption. Calcified Tissue International 70: 127–133. doi:10.1007/s002230010018.

    Article  CAS  PubMed  Google Scholar 

  24. Linsuwanont, B., Y. Takagi, K. Ohya, and H. Shimokawa. 2002. Expression of matrix metalloproteinase-9 mRNA and protein during deciduous tooth resorption in bovine odontoclasts. Bone 31: 472–478.

    Article  CAS  PubMed  Google Scholar 

  25. Roodman, G.D. 2009. Osteoclasts pump iron. Cell Metabolism 9: 405–406. doi:10.1016/j.cmet.2009.04.005.

    Article  CAS  PubMed  Google Scholar 

  26. Ishii, K.A., T. Fumoto, K. Iwai, S. Takeshita, M. Ito, N. Shimohata, H. Aburatani, S. Taketani, C.J. Lelliott, A. Vidal-Puig, and K. Ikeda. 2009. Coordination of PGC-1beta and iron uptake in mitochondrial biogenesis and osteoclast activation. Nature Medicine 15: 259–266. doi:10.1038/nm.1910.

    Article  CAS  PubMed  Google Scholar 

  27. Sonoda, J., I.R. Mehl, L.W. Chong, R.R. Nofsinger, and R.M. Evans. 2007. PGC-1beta controls mitochondrial metabolism to modulate circadian activity, adaptive thermogenesis, and hepatic steatosis. Proceedings of the National Academy of Sciences of the United States of America 104: 5223–5228. doi:10.1073/pnas.0611623104.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Vianna, C.R., M. Huntgeburth, R. Coppari, C.S. Choi, J. Lin, S. Krauss, G. Barbatelli, I. Tzameli, Y.B. Kim, S. Cinti, G.I. Shulman, B.M. Spiegelman, and B.B. Lowell. 2006. Hypomorphic mutation of PGC-1beta causes mitochondrial dysfunction and liver insulin resistance. Cell Metabolism 4: 453–464. doi:10.1016/j.cmet.2006.11.003.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was partially supported by the National Natural Science Foundation of China (No. 81273090), Jiangsu provincial grant (No. BK2012608), Social Development Fund of Jiangsu Province (No. BE2011605), and Science and Technology Support Project of Zhenjiang City (social development 2014, to Guo-yang Zhao).

Conflict of Interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to You-jia Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Gy., Di, Dh., Wang, B. et al. Effects of Mouse Hepcidin 1 Treatment on Osteoclast Differentiation and Intracellular Iron Concentration. Inflammation 38, 718–727 (2015). https://doi.org/10.1007/s10753-014-9982-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-014-9982-2

KEY WORDS

Navigation