Skip to main content
Log in

Effect of hepcidin on intracellular calcium in human osteoblasts

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Hepcidin is known to increase intracellular iron through binding to and degrading ferroportin, which is a transmembrane protein that transports iron from the intracellular to the outside. However, it is not clear whether hepcidin has a similar effect on intracellular calcium. Here, we investigated the influence of hepcidin on intracellular calcium in human osteoblasts, with or without high environmental iron concentrations. Our data showed that hepcidin (<100 nmol/L) could increase intracellular calcium, and this effect was more significant when cells were exposed to high environmental iron concentrations. To further explore its underlying mechanisms, we pretreated human osteoblasts with Nimodipine, a L-type calcium channel blocker, and Dantrolene, a ryanodine receptor antagonist to inhibit abnormal calcium release from the sarco-endoplasmic reticulum. These treatments had not resulted in any alteration of intracellular calcium in human osteoblasts. Thus, these findings indicate that the increase of intracellular calcium induced by hepcidin is probably due to calcium release from endoplasmic reticulum, which is triggered by calcium influx.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Weinberg ED (2006) Iron loading: a risk factor for osteoporosis. Biometals 19:633–635

    Article  PubMed  CAS  Google Scholar 

  2. Yamaguchi M (2010) Role of nutritional zinc in the prevention of osteoporosis. Mol Cell Biochem 338:241–254

    Article  PubMed  CAS  Google Scholar 

  3. Yamasaki K, Hagiwara H (2009) Excess iron inhibits osteoblast metabolism. Toxicol Lett 191:211–215

    Article  PubMed  CAS  Google Scholar 

  4. Liu G, Men P, Kenner GH, Miller SC (2006) Age-associated iron accumulation in bone: implications for postmenopausal osteoporosis and a new target for prevention and treatment by chelation. Biometals 19:245–251

    Article  PubMed  CAS  Google Scholar 

  5. Qu ZH, Zhang XL, Tang TT, Dai KR (2008) Promotion of osteogenesis through beta-catenin signaling by desferrioxamine. Biochem Biophys Res Commun 370:332–337

    Article  PubMed  CAS  Google Scholar 

  6. Valenti L, Varenna M, Fracanzani AL, Rossi V, Fargion S, Sinigaglia L (2009) Association between iron overload and osteoporosis in patients with hereditary hemochromatosis. Ostroporos Int 20:549–555

    Article  CAS  Google Scholar 

  7. Tsay J, Yang Z, Ross FP, Cunningham-Rundles S, Lin H, Coleman R, Mayer-Kuckuk P, Doty SB, Grady RW, Giardina PJ, Boskey AL, Vogiatzi MG (2010) Bone loss caused by iron overload in a murine model: importance of oxidative stress. Blood 116:2582–2589

    Article  PubMed  CAS  Google Scholar 

  8. Li GF, Pan YZ, Sirois P, Li K, Xu YJ (2012) Iron homeostasis in osteoporosis and its clinical implications. Osteoporos Int. doi:10.1007/s00198-012-1982-1

  9. Park CH, Valore EV, Waring AJ, Ganz T (2001) Hepcidin, a urinary antimicrobial peptide synthesized in the liver. J Biol Chem 276:7806–7810

    Article  PubMed  CAS  Google Scholar 

  10. Zhang AS, Enns CA (2009) Molecular mechanisms of normal iron homeostasis. Hematol Am Soc Hematol Educ Program 1:207–214

    Article  Google Scholar 

  11. Nemeth E, Tuttle MS, Powelson J, Vaughn MB, Donovan A, Ward DM, Ganz T, Kaplan J (2004) Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization. Science 306:2090–2093

    Article  PubMed  CAS  Google Scholar 

  12. De Domenico I, Ward DM, Langelier C, Vaughn MB, Nemeth E, Sundquist WI, Ganz T, Musci G, Kaplan J (2007) The molecular mechanism of hepcidin-mediated ferroportin down-regulation. Mol Biol Cell 18:2569–2578

    Article  PubMed  Google Scholar 

  13. Rivera S, Nemeth E, Gabayan V, Lopez MA, Farshidi D, Ganz T (2005) Synthetic hepcidin causes rapid dose-dependent hypoferremia and is concentrated in ferroportin-containing organs. Blood 106:2196–2199

    Article  PubMed  CAS  Google Scholar 

  14. Xu Y, Li G, Du B, Zhang P, Xiao L, Sirois P, Li K (2011) Hepcidin increases intracellular Ca2+ of osteoblast hFOB1.19 through L-type Ca2+ channels. Regul Pept 172:58–61

    Article  PubMed  CAS  Google Scholar 

  15. Berridge MJ, Lipp P, Bootman MD (2000) Signal transduction. The calcium entry pas de deux. Science 287:1604–1605

    Article  PubMed  CAS  Google Scholar 

  16. Labelle D, Jumarie C, Moreau R (2007) Capacitative calcium entry and proliferation of human osteoblast-like MG-63 cells. Cell Prolif 40:866–884

    Article  PubMed  CAS  Google Scholar 

  17. Jang HO, Park YS, Lee JH, Seo JB, Koo KI, Jeong SC, Jin SD, Lee YH, Eom HS, Yun I (2007) Effect of extracts from safflower seeds on osteoblast differentiation and intracellular calcium ion concentration in MC3T3-E1 cells. Nat Prod Res 21:787–797

    Article  PubMed  CAS  Google Scholar 

  18. Tsay J, Yang Z, Ross FP, Cunningham-Rundles S, Lin H, Coleman R, Mayer-Kuckuk P, Doty SB, Grady RW, Giardina PJ, Boskey AL, Vogiatzi MG (2010) Bone loss caused by iron overload in a murine model: importance of oxidative stress. Blood 116:2582–2589

    Article  PubMed  CAS  Google Scholar 

  19. Kudo H, Suzuki S, Watanabe A, Kikuchi H, Sassa S, Sakamoto S (2008) Effects of colloidal iron overload on renal and hepatic siderosis and the femur in male rats. Toxicology 246:143–147

    Article  PubMed  CAS  Google Scholar 

  20. Jian J, Pelle E, Huang X (2009) Iron and menopause: does increased iron affect the health of postmenopausal women? Antioxid Redox Signal 11:2939–2943

    Article  PubMed  CAS  Google Scholar 

  21. Guggenbuhl P, Filmon R, Mabilleau G, Basle MF, Chappard D (2008) Iron inhibits hydroxyapatite crystal growth in vitro. Metabolism 57:903–910

    Article  PubMed  CAS  Google Scholar 

  22. Lauckner JE, Hille B, Mackie K (2005) The cannabinoid agonist WIN55,212–2 increases intracellular calcium via CB1 receptor coupling to Gq/11 G proteins. Proc Natl Acad Sci USA 102:19144–19149

    Article  PubMed  CAS  Google Scholar 

  23. Varadi A, Rutter GA (2004) Ca2+-induced Ca2+ release in pancreatic islet beta-cells: critical evaluation of the use of endoplasmic reticulum-targeted “cameleons”. Endocrinology 145:4540–4549

    Article  PubMed  CAS  Google Scholar 

  24. Lemmens R, Larsson O, Berggren PO, Islam MS (2001) Ca2+-induced Ca2+ release from the endoplasmic reticulum amplifies the Ca2+ signal mediated by activation of voltage-gated L-type Ca2+ channels in pancreatic beta-cells. J Biol Chem 276:9971–9977

    Article  PubMed  CAS  Google Scholar 

  25. Graves TK, Hinkle PM (2003) Ca(2+)-induced Ca(2+) release in the pancreatic beta-cell: direct evidence of endoplasmic reticulum Ca(2+) release. Endocrinology 144:3565–3574

    Article  PubMed  CAS  Google Scholar 

  26. Choi KJ, Cho DS, Kim JY, Kim BJ, Lee KM, Kim SH, Kim DK, Kim SH, Park HS (2011) Ca-induced Ca release from internal stores in INS-1 rat insulinoma cells. Korean J Physiol Pharmacol 15:53–59

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research is supported by Natural Science Foundation of Jiangsu Province (BK2008165), Programs Foundation of Ministry of Education of China (20103201110020) and Postgraduate Innovation Fund of Jiangsu Province (CX10B-053Z).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to You-Jia Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, GF., Xu, YJ., He, YF. et al. Effect of hepcidin on intracellular calcium in human osteoblasts. Mol Cell Biochem 366, 169–174 (2012). https://doi.org/10.1007/s11010-012-1294-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-012-1294-y

Keywords

Navigation