Skip to main content

Advertisement

Log in

Anti-apoptotic Potency of TNFR:Fc Gene in Ischemia/Reperfusion-Induced Myocardial Cell Injury

  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

The aim of the study was to investigate the anti-apoptotic potency of TNFR:Fc gene in ischemia/reperfusion-induced myocardial cell injury and hypoxia/reoxygenation-induced H9c2 rat cardiomyocytes injury. Rats were randomly divided into the following groups (n = 8): (1) sham operation group; (2) ischemia–reperfusion (I/R) rats treated with rAAV-EGFP; (3) I/R rats treated with rAAV-TNFR:Fc group. rAAV-EGFP or rAAV-TNFR:Fc was injected intra-myocardial at four sites on the anterior and posterior walls of left ventricle immediately after the construction of I/R-induced AMI model in rats. The effects of TNFR:Fc on apoptosis and cardiacfunction were observed after 72 h of coronary reperfusion. In the in vitro study, apoptosis was analyzed in H9c2 rat cardiomyocytes treated either with nomoxia alone, or hypoxia/reoxygenation in the presence of rAAV-GFP or rAAV-TNFR:Fc. We found that (1) TNFR:Fc gene improved cardiac function (EF, LVESP, LVEDP and dp/dt max) post I/R-induced AMI; (2) TNFR:Fc gene inhibited I/R-induced apoptosis and attenuated the level of TNF-α in serum and cardiac tissue; (3) TNFR:Fc gene prevented apoptosis in hypoxia/reoxygenation-induced H9c2 rat cardiomyocytes associated with inhibition of caspase-3 activation and normalization of ratio of the Bcl-2/Bax. We concluded that TNFR:Fc gene transfection has anti-apoptotic potency in ischemia/reperfusion-induced myocardial cell injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kapur, N.K., V. Paruchuri, J.A. Urbano-Morales, E.E. Mackey, G.H. Daly, X. Qiao, N. Pandian, G. Perides, and R.H. Karas. 2013. Mechanically unloading the left ventricle before coronary reperfusion reduces left ventricular wall stress and myocardial infarct size. Circulation 128(4): 328–336.

    Article  PubMed  Google Scholar 

  2. Bryant, D., L. Becker, J. Richardson, J. Shelton, F. Franco, R. Peshock, M. Thompson, and B. Giroir. 1998. Cardiac failure in transgenic mice with myocardial expression of tumor necrosis factor-alpha. Circulation 97: 1375–1381.

    Article  CAS  PubMed  Google Scholar 

  3. Gurevitch, J., I. Frolkis, Y. Yuhas, B. Lifschitz Mercer, E. Berger, Y. Paz, M. Matsa, A. Kramer, and R. Mohr. 1997. Anti-tumor necrosis factor-alpha improves myocardial recovery after ischemia and reperfusion. Journal of the American College of Cardiology 30: 1554–1561.

    Article  CAS  PubMed  Google Scholar 

  4. Bozkurt, B., S.B. Kribbs, F.J. Clubb, L.H. Michael, V.V. Didenko, P.J. Hornsby, Y. Seta, H. Oral, F.G. Spinale, and D.L. Mann. 1998. Pathophysiologically relevant concentrations of tumor necrosis factor-α promote progressive left ventricular dysfunction and remodeling in rats. Circulation 97: 1382–1391.

    Article  CAS  PubMed  Google Scholar 

  5. Bao, C., J. Guo, M. Zheng, Y. Chen, G. Lin, and M. Hu. 2010. Enhancement of the survival of engrafted mesenchymal stem cells in the ischemic heart by TNFR gene transfection. Biochemistry and Cell Biology 88(4): 629–634.

    Article  CAS  PubMed  Google Scholar 

  6. Kubota, T., G.S. Bounoutas, M. Miyagishima, T. Kadokami, V.J. Sanders, C. Bruton, et al. 2000. Soluble tumor necrosis factor receptor abrogates myocardial inflammation but not hypertrophy in cytokine-induced cardiomyopathy. Circulation 101(21): 2518–2525.

    Article  CAS  PubMed  Google Scholar 

  7. Sugano, M., K. Tsuchida, T. Hata, and N. Makino. 2004. In vivo transfer of soluble TNF-alpha receptor 1 gene improves cardiac function and reduces infarct size after myocardial infarction in rats. FASEB Journal 18(7): 911–913.

    CAS  PubMed  Google Scholar 

  8. Gurantz, D., A. Yndestad, B. Halvorsen, O.V. Lunde, J.H. Omens, T. Ueland, et al. 2005. Etanercept or intravenous immunoglobulin attenuates expression of genes involved in post-myocardial infarction remodeling. Cardiovascular Research 67(1): 106–115.

    Article  CAS  PubMed  Google Scholar 

  9. Bryant, D., L. Becker, J. Richardson, et al. 1998. Cardiac failure in transgenic mice with myocardial expression of tumor necrosis factor-alpha. Circulation 97(14): 1375–1381.

    Article  CAS  PubMed  Google Scholar 

  10. Gurevitch, J., I. Frolkis, Y. Yuhas, et al. 1997. Anti-tumor necrosis factor-alpha improves myocardial recovery after ischemia and reperfusion. JAMA 30(6): 1554–1561.

    CAS  Google Scholar 

  11. Bozkurt, B., S.B. Kribbs, F.J. Clubb, et al. 1998. Pathophysiologically relevant concentrations of tumor necrosis factor-α promote progressive left ventricular dysfunction and remodeling in rats. Circulation 97(14): 1382–1391.

    Article  CAS  PubMed  Google Scholar 

  12. Irwin, M.W., S. Mak, D.L. Mann, et al. 1999. Tissue expression and immunolocalization of tumor necrosis factor-alpha in postinfarction dysfunctional myocardium. Circulation 99(11): 1492–1498.

    Article  CAS  PubMed  Google Scholar 

  13. Akatsu, T., M. Nakamura, M. Satoh, and K. Hiramori. 2003. Increased mRNA expression of tumour necrosis factor-α and its converting enzyme in circulating leucocytes of patients with acute myocardial infarction. Clinical Science (London) 105(1): 39–44.

    Article  CAS  Google Scholar 

  14. Song, W., X. Lu, and Q. Feng. 2000. Tumor necrosis factor-alpha induces apoptosis via inducible nitric oxide synthase in neonatal mouse cardiomyocytes. Cardiovascular Research 45(3): 595–602.

    Article  CAS  PubMed  Google Scholar 

  15. Bennett, J., D. Duan, J. Englehardt, and A.M. Maguire. 1997. Real-time non-invasive in vivo assessment of adeno-associated virus-mediated retinal transduction. Investigative Ophthalmology & Visual Science 38(13): 2857–2863.

    CAS  Google Scholar 

  16. Kaludov, N., B. Handelman, and J.A. Chiorini. 2002. Scalable purification of adeno-associated virus type 2, 4, or 5 using ion-exchange chromatography. Human Gene Therapy 13(10): 1235–1243.

    Article  CAS  PubMed  Google Scholar 

  17. Xiao, X., J. Li, and R.J. Samulski. 1996. Efficient long-term gene transfer into muscle tissue of immunocompetent mice by adeno-associated virus vector. Journal of Virology 70(11): 8098–8108.

    CAS  PubMed Central  PubMed  Google Scholar 

  18. Hutson, T.H., C. Kathe, S.C. Menezes, M.C. Rooney, H. Bueler, and L.D. Moon. 2014. The use of an adeno-associated viral vector for efficient bicistronic expression of two genes in the central nervous system. Methods in Molecular Biology 1162: 189–207.

    Article  CAS  PubMed  Google Scholar 

  19. Zaiss, A.K., Q. Liu, G.P. Bowen, N.C. Wong, J.S. Bartlett, and D.A. Muruve. 2002. Differential activation of innate immune responses by adenovirus and adeno-associated virus vectors. Journal of Virology 76(9): 4580–4590.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This project was supported by fund from Youth project of National Natural Science Foundation (81100078), the Key Project of Chinese Ministry of Education (211207), Guangzhou Pearl River science and technology new star project plan (2012 J2200063) and Guangdong Science and Technology Department (S2011040001392).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jun Guo or Zi-Cheng Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, J., Zheng, D., Li, HR. et al. Anti-apoptotic Potency of TNFR:Fc Gene in Ischemia/Reperfusion-Induced Myocardial Cell Injury. Inflammation 38, 664–671 (2015). https://doi.org/10.1007/s10753-014-9975-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-014-9975-1

KEY WORDS

Navigation