Skip to main content
Log in

CaMKK2 alleviates myocardial ischemia/reperfusion injury by inhibiting oxidative stress and inflammation via the action on the AMPK-AKT-GSK-3β/Nrf2 signaling cascade

  • Original Research Paper
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Objective

Calcium/calmodulin-dependent protein kinase kinase 2 (CaMKK2) can regulate numerous biological processes and is implicated in diverse pathological processes. Yet its role in myocardial ischemia/reperfusion (MI/R) injury remains unknown. This project explored the possible functions and mechanisms of CaMKK2 in MI/R injury.

Methods

A rat model of MI/R in vivo was established using the left anterior descending coronary artery ligation method. Rat cardiomyocytes were exposed to hypoxia/reoxygenation (H/R) in vitro to establish a cell model. Overexpression of CaMKK2 was achieved by infecting recombinant adeno-associated virus or adenovirus expressing CaMKK2. Real-time quantitative PCR, immunoblotting, TTC staining, TUNEL assay, ELISA, oxidative stress detection assays, flow cytometry, and CCK-8 assay were carried out.

Results

A decline in CaMKK2 levels was induced by MI/R in vivo or H/R in vitro. Up-modulation of CaMKK2 in rats ameliorated the cardiac injury evoked by MI/R injury accompanied by suppression of cardiac apoptosis, oxidative stress, and proinflammatory response. Rat cardiomyocytes with CaMKK2 overexpression were also protected from H/R damage by inhibiting apoptosis, oxidative stress, and proinflammatory response. CaMKK2 overexpression led to increased phosphorylation of AMPK, AKT, and GSK-3β, and enhanced activation of Nrf2 under MI/R or H/R conditions. Inhibition of AMPK abolished CaMKK2-mediated Nrf2 activation and relevant cardioprotective effect. Restraint of Nrf2 also diminished CaMKK2-mediated relevant cardioprotective effect.

Conclusions

Up-regulation of CaMKK2 provides a therapeutic benefit in the rat model of MI/R injury by boosting the Nrf2 pathway through regulation of AMPK/AKT/GSK-3β, which suggests CaMKK2 as a new molecular target for the treatment of MI/R injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The datasets used during the present study are available from the corresponding author upon reasonable request.

Abbreviations

CaMKK2:

Calcium/calmodulin-dependent protein kinase kinase 2

MI/R:

Myocardial ischemia/reperfusion

H/R:

Hypoxia/reoxygenation

AMPK:

Adenosine monophosphate-activated protein kinase

GSK-3β:

Glycogen synthase kinase-3β

Nrf2:

Nuclear factor erythroid 2-related factor 2

RT-qPCR:

Real-time quantitative PCR

AAV:

Adeno-associated virus

LDH:

Lactate dehydrogenase

cTn-I:

Cardiac troponin I

TTC:

Triphenyl tetrazolium chloride

TUNEL:

Terminal-deoxynucleotidyl transferase dUTP-biotin nick end labeling

ROS:

Reactive oxygen species

MDA:

Malondialdehyde

SOD:

Superoxide dismutase

CCK-8:

Cell counting kit-8

ARE:

Anti-oxidant response element

NQO-1:

NADPH quinone oxidoreductase-1

HO-1:

Heme oxygenase-1

References

  1. Virani SS, Alonso A, Aparicio HJ, Benjamin EJ, Bittencourt MS, Callaway CW, et al. Heart disease and stroke statistics-2021 update: a report from the american heart association. Circulation. 2021;143:e254–743.

    Article  PubMed  Google Scholar 

  2. Dong Y, Chen H, Gao J, Liu Y, Li J, Wang J. Molecular machinery and interplay of apoptosis and autophagy in coronary heart disease. J Mol Cell Cardiol. 2019;136:27–41.

    Article  CAS  PubMed  Google Scholar 

  3. Hausenloy DJ, Yellon DM. Ischaemic conditioning and reperfusion injury. Nat Rev Cardiol. 2016;13:193–209.

    Article  CAS  PubMed  Google Scholar 

  4. Yellon DM, Hausenloy DJ. Myocardial reperfusion injury. N Engl J Med. 2007;357:1121–35.

    Article  CAS  PubMed  Google Scholar 

  5. Xiang M, Lu Y, Xin L, Gao J, Shang C, Jiang Z, et al. Role of oxidative stress in reperfusion following myocardial ischemia and its treatments. Oxid Med Cell Longev. 2021;2021:6614009.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Andreadou I, Tsoumani M, Vilahur G, Ikonomidis I, Badimon L, Varga ZV, et al. PCSK9 in myocardial infarction and cardioprotection: importance of lipid metabolism and inflammation. Front Physiol. 2020;11: 602497.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Najar MA, Rex DAB, Modi PK, Agarwal N, Dagamajalu S, Karthikkeyan G, et al. A complete map of the Calcium/calmodulin-dependent protein kinase kinase 2 (CAMKK2) signaling pathway. J Cell Commun Signal. 2021;15:283–90.

    Article  CAS  PubMed  Google Scholar 

  8. Anderson KA, Lin F, Ribar TJ, Stevens RD, Muehlbauer MJ, Newgard CB, et al. Deletion of CaMKK2 from the liver lowers blood glucose and improves whole-body glucose tolerance in the mouse. Mol Endocrinol. 2012;26:281–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lin F, Ribar TJ, Means AR. The Ca2+/calmodulin-dependent protein kinase kinase, CaMKK2, inhibits preadipocyte differentiation. Endocrinology. 2011;152:3668–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Racioppi L, Means AR. Calcium/calmodulin-dependent protein kinase kinase 2: roles in signaling and pathophysiology. J Biol Chem. 2012;287:31658–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Najar MA, Modi PK, Ramesh P, Sidransky D, Gowda H, Prasad TSK, et al. Molecular profiling associated with calcium/calmodulin-dependent protein kinase kinase 2 (CAMKK2)-mediated carcinogenesis in gastric cancer. J Proteome Res. 2021;20:2687–703.

    Article  CAS  PubMed  Google Scholar 

  12. Williams JN, Sankar U. CaMKK2 signaling in metabolism and skeletal disease: a new axis with therapeutic potential. Curr Osteoporos Rep. 2019;17:169–77.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Zhang Y, Zhang P, Deng C. miR-378a-5p regulates CAMKK2/AMPK pathway to contribute to cerebral ischemia/reperfusion injury-induced neuronal apoptosis. Folia Histochem Cytobiol. 2021;59:57–65.

    Article  CAS  PubMed  Google Scholar 

  14. Lee YJ, Shu MS, Kim JY, Kim YH, Sim KH, Sung WJ, et al. Cilostazol protects hepatocytes against alcohol-induced apoptosis via activation of AMPK pathway. PLoS ONE. 2019;14: e0211415.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Dong GZ, Lee JH, Ki SH, Yang JH, Cho IJ, Kang SH, et al. AMPK activation by isorhamnetin protects hepatocytes against oxidative stress and mitochondrial dysfunction. Eur J Pharmacol. 2014;740:634–40.

    Article  CAS  PubMed  Google Scholar 

  16. Park SM, Kim SW, Jung EH, Ko HL, Im CK, Lee JR, et al. Sipjeondaebo-tang alleviates oxidative stress-mediated liver injury through activation of the CaMKK2-AMPK signaling pathway. Evid Based Complement Alternat Med. 2018;2018:8609285.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Zhang Y, Xu N, Ding Y, Zhang Y, Li Q, Flores J, et al. Chemerin suppresses neuroinflammation and improves neurological recovery via CaMKK2/AMPK/Nrf2 pathway after germinal matrix hemorrhage in neonatal rats. Brain Behav Immun. 2018;70:179–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Nguyen T, Nioi P, Pickett CB. The Nrf2-antioxidant response element signaling pathway and its activation by oxidative stress. J Biol Chem. 2009;284:13291–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kobayashi M, Yamamoto M. Molecular mechanisms activating the Nrf2-Keap1 pathway of antioxidant gene regulation. Antioxid Redox Signal. 2005;7:385–94.

    Article  CAS  PubMed  Google Scholar 

  20. Rada P, Rojo AI, Chowdhry S, McMahon M, Hayes JD, Cuadrado A. SCF/{beta}-TrCP promotes glycogen synthase kinase 3-dependent degradation of the Nrf2 transcription factor in a Keap1-independent manner. Mol Cell Biol. 2011;31:1121–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Choi SH, Kim YW, Kim SG. AMPK-mediated GSK3beta inhibition by isoliquiritigenin contributes to protecting mitochondria against iron-catalyzed oxidative stress. Biochem Pharmacol. 2010;79:1352–62.

    Article  CAS  PubMed  Google Scholar 

  22. Zhang L, Chen D, Tu Y, Sang T, Pan T, Lin H, et al. Vitexin attenuates autoimmune hepatitis in mouse induced by syngeneic liver cytosolic proteins via activation of AMPK/AKT/GSK-3beta/Nrf2 pathway. Eur J Pharmacol. 2022;917: 174720.

    Article  CAS  PubMed  Google Scholar 

  23. Duan J, Guan Y, Mu F, Guo C, Zhang E, Yin Y, et al. Protective effect of butin against ischemia/reperfusion-induced myocardial injury in diabetic mice: involvement of the AMPK/GSK-3beta/Nrf2 signaling pathway. Sci Rep. 2017;7:41491.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Xu C, Wang J, Fan Z, Zhang S, Qiao R, Liu Y, et al. Cardioprotective effects of melatonin against myocardial ischaemia/reperfusion injury: Activation of AMPK/Nrf2 pathway. J Cell Mol Med. 2021:6455–59.

  25. Zhao B, Li GP, Peng JJ, Ren LH, Lei LC, Ye HM, et al. Schizandrin B attenuates hypoxia/reoxygenation injury in H9c2 cells by activating the AMPK/Nrf2 signaling pathway. Exp Ther Med. 2021;21:220.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lindsey ML, Bolli R, Canty JM Jr, Du XJ, Frangogiannis NG, Frantz S, et al. Guidelines for experimental models of myocardial ischemia and infarction. Am J Physiol Heart Circ Physiol. 2018;314:H812–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Yu S, Li Y, Zhao H, Wang Q, Chen P. The histone demethylase JMJD1C regulates CAMKK2-AMPK signaling to participate in cardiac hypertrophy. Front Physiol. 2020;11:539.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Jaen RI, Fernandez-Velasco M, Terron V, Sanchez-Garcia S, Zaragoza C, Canales-Bueno N, et al. BML-111 treatment prevents cardiac apoptosis and oxidative stress in a mouse model of autoimmune myocarditis. FASEB J. 2020;34:10531–46.

    Article  CAS  PubMed  Google Scholar 

  29. Kim HK, Ko TH, Song IS, Jeong YJ, Heo HJ, Jeong SH, et al. BH4 activates CaMKK2 and rescues the cardiomyopathic phenotype in rodent models of diabetes. Life Sci Alliance. 2020;3: e20190061.

    Article  Google Scholar 

  30. Zhang Y, Xu N, Ding Y, Doycheva DM, Zhang Y, Li Q, et al. Chemerin reverses neurological impairments and ameliorates neuronal apoptosis through ChemR23/CAMKK2/AMPK pathway in neonatal hypoxic-ischemic encephalopathy. Cell Death Dis. 2019;10:97.

    Article  PubMed  PubMed Central  Google Scholar 

  31. McCullough LD, Tarabishy S, Liu L, Benashski S, Xu Y, Ribar T, et al. Inhibition of calcium/calmodulin-dependent protein kinase kinase beta and calcium/calmodulin-dependent protein kinase IV is detrimental in cerebral ischemia. Stroke. 2013;44:2559–66.

    Article  CAS  PubMed  Google Scholar 

  32. Ying L, Li N, He Z, Zeng X, Nan Y, Chen J, et al. Fibroblast growth factor 21 Ameliorates diabetes-induced endothelial dysfunction in mouse aorta via activation of the CaMKK2/AMPKalpha signaling pathway. Cell Death Dis. 2019;10:665.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Hawley SA, Pan DA, Mustard KJ, Ross L, Bain J, Edelman AM, et al. Calmodulin-dependent protein kinase kinase-beta is an alternative upstream kinase for AMP-activated protein kinase. Cell Metab. 2005;2:9–19.

    Article  CAS  PubMed  Google Scholar 

  34. Woods A, Dickerson K, Heath R, Hong SP, Momcilovic M, Johnstone SR, et al. Ca2+/calmodulin-dependent protein kinase kinase-beta acts upstream of AMP-activated protein kinase in mammalian cells. Cell Metab. 2005;2:21–33.

    Article  CAS  PubMed  Google Scholar 

  35. Yang H, Zhao P, Tian S. Clopidogrel Protects Endothelium by Hindering TNFalpha-Induced VCAM-1 Expression through CaMKKbeta/AMPK/Nrf2 Pathway. J Diabetes Res. 2016;2016:9128050.

    Article  PubMed  Google Scholar 

  36. Wang S, Yi X, Wu Z, Guo S, Dai W, Wang H, et al. CAMKK2 defines ferroptosis sensitivity of melanoma cells by regulating AMPK-Nrf2 pathway. J Invest Dermatol. 2021:189–200.e8.

  37. Rada P, Rojo AI, Chowdhry S, McMahon M, Hayes JD, Cuadrado A. SCF/beta-TrCP promotes glycogen synthase kinase 3-dependent degradation of the Nrf2 transcription factor in a Keap1-independent manner. Mol Cell Biol. 2011;31:1121–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wen L, Yang QH, Ma XL, Li T, Xiao S, Sun CF. Inhibition of TNFAIP1 ameliorates the oxidative stress and inflammatory injury in myocardial ischemia/reperfusion injury through modulation of Akt/GSK-3beta/Nrf2 pathway. Int Immunopharmacol. 2021;99: 107993.

    Article  CAS  PubMed  Google Scholar 

  39. Li Y, Huang J, Wang J, Xia S, Ran H, Gao L, et al. Human umbilical cord-derived mesenchymal stem cell transplantation supplemented with curcumin improves the outcomes of ischemic stroke via AKT/GSK-3beta/beta-TrCP/Nrf2 axis. J Neuroinflammation. 2023;20:49.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Ci X, Zhou J, Lv H, Yu Q, Peng L, Hua S. Betulin exhibits anti-inflammatory activity in LPS-stimulated macrophages and endotoxin-shocked mice through an AMPK/AKT/Nrf2-dependent mechanism. Cell Death Dis. 2017;8: e2798.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The work was supported by the Shaanxi Natural Science Foundation Project (2022SF-132), the General Teaching Reform Project of South China University of Technology (2022–10), and the Guangzhou First People’s Hospital Red Cotton Plan Project (2023–06).

Author information

Authors and Affiliations

Authors

Contributions

CL and JH designed the work, performed the experiments, and wrote the manuscript. HQ performed data analysis and provided technical support. HX contributed to the conceptualization and reviewed the manuscript.

Corresponding author

Correspondence to Hong Xin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Conflcit of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Responsible Editor: John Di Battista.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 708 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, C., Hao, J., Qiu, H. et al. CaMKK2 alleviates myocardial ischemia/reperfusion injury by inhibiting oxidative stress and inflammation via the action on the AMPK-AKT-GSK-3β/Nrf2 signaling cascade. Inflamm. Res. 72, 1409–1425 (2023). https://doi.org/10.1007/s00011-023-01756-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-023-01756-6

Keywords

Navigation