Skip to main content
Log in

Study of chemical bonding in the interhalogen complexes based on density functional theory

  • Published:
Hyperfine Interactions Aims and scope Submit manuscript

Abstract

The density functional theory analysis was used for a number XYL complexes (XY is a dihalogen molecule and L is a Lewis base), formed between molecules I2, ICl, IBr and pyridine. The calculated geometrical parameters, IR spectra and nuclear quadrupole interaction constants of iodine are consistent with the data of microwave spectroscopy and nuclear quadrupole resonance. The good correlation between the experimental and calculated binding energies of the inner electrons of iodine, chlorine and nitrogen atoms were found with the calculation using both Gaussian and Slater functions. The comparison of experimental and calculated changes in the electron density on the atoms upon complex formation suggested the choice of scheme for calculating the effective charge on the atoms, which allow us to interpret the experimental spectra. It is shown that the use of both calculated schemes allows us to predict the enthalpy of complex formation in close agreement with the experimental values. The energy analysis shows that in the complexes the electrostatic binding energy dominates that of covalent binding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hargittai, M., Hargittai, I.: The Molecular Geometries of Coordination Compounds in the Vapour Phase. Elsevier, Amsterdam (1977) 342p

    MATH  Google Scholar 

  2. Dvorak, M.A., Ford, R.S., Suenram, R.D., Lovas, F.J., Leopold, K.R.: van der Waals vs. covalent bonding: microwave characterization of a structurally intermediate case. JACS 114, 108–115 (1992)

    Article  Google Scholar 

  3. Poleshchuk, O. Kh., Legon, A.C.: Density functional theory studies of bonding in complexes H3N...XY of ammonia and dihalogen molecules: a comparison with experimental results from rotational spectroscopy. Z. Naturforsch. 57a, 537–543 (2002)

    ADS  Google Scholar 

  4. Poleshchuk, O. Kh., Yureva, A.G., Fateev, A.V., Brabchadel, V.: Investigation of the electronic structure of SO3 and I2 complexes by density functional theory. Butlerov. Communs. 9, 10–20 (2006)

    Google Scholar 

  5. Poleshchuk, O. Kh., Fateev, A.V., Legon, A.C., Frenking, G.: Hyperfine interactions and DFT study of the bonding in complexes of metal halides, interhalogen diatomicsin SO3 with Lewis bases. Trends Phys. Chem. 15, 13–43 (2014)

    Google Scholar 

  6. Karpfen, A.: The intermolecular interaction in the charge-transfer complex between NH3 and F2. Chem. Phys. Lett. 316, 483–498 (2000)

  7. Karpfen, A.: Charge-transfer complexes between NH3 and the halogens F2, ClF, and Cl2: an ab initio study on the intermolecular interaction. J. Phys. Chem. 104A, 6871–6879 (2000)

    Article  Google Scholar 

  8. Karpfen, A.: Charge-transfer complexes between the amines (CH3)n NH 3−n (n = 0 −3) and the ClF molecule: an ab initio and density functional study on the intermolecular interaction. J. Phys. Chem. 105A, 2064–2072 (2001)

    Article  Google Scholar 

  9. Karpfen, A.: The intermolecular interaction in the charge-transfer complexes between amines and halogens: a theoretical characterization of the trends in halogen bonding. Theor. Chem. Acc. 110, 1–9 (2003)

    Article  Google Scholar 

  10. Fleming, C., Hanna, M.W.: Nuclear quadrupole resonance investigation of iodine monochloride complexed with pyridines. JACS 93, 5030–5034 (1971)

    Article  Google Scholar 

  11. Bowmaker, G.A., Hacobian, S.: Nuclear quadrupole resonance of charge-transfer complexes. II. The aminehalogen complexes. Aust. J. Chem. 22, 2047–2059 (1969)

    Article  Google Scholar 

  12. Bowmaker, G.A., Boyd, P.D.W., Sorrenson, R.J.: SCF-MS-X α study of the bonding and nuclear quadrupole coupling in trihalide ions XY\(_{\mathrm {2}}^{-}\) (X =I, Br or Cl; Y =I, Br, Cl of F) and xenon difluoride. J. Chem. Soc. Faraday Trans. 2, 1125–1143 (1984)

    Article  Google Scholar 

  13. Legon, A.C.: The interactions of dihalogens and hydrogen halides with Lewis bases in the gas phase: an experimental comparison of the halogen bond and the hydrogen bond. Struct. Bond. 126, 17–64 (2008)

    Article  Google Scholar 

  14. Mostad, A., Svensson, S., Nilsson, R., Basilier E., Gelius, U., Nordling, C., Siegbahn, K.: Pyridine-iodomonochloride. A charge transfer complex studied by ESCA. Chem. Phys. Lett. 23, 157–159 (1973)

  15. Poleshchuk, O. Kh., Nogaj, B., Dolenko, G.N., Elin, V.P.: Electron density redistribution on complexation in non-transition element complexes. J. Mol. Struct. 297, 295–312 (1993)

    Article  ADS  Google Scholar 

  16. Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J.A., Peralta, J.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Rega, N., Millam, J.M., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, R.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, O., Foresman, J.B., Ortiz, J.V., Cioslowski, J., Fox, D.J.: Gaussian Inc., Wallingford CT (2009)

    Google Scholar 

  17. Yanai, Tew, T, David, P. N., Handy, N.C., Tew, D.P.: A new hybrid exchange–correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chem. Phys. Lett. 393, 51–57 (2004)

    Article  ADS  Google Scholar 

  18. Yurieva, A.G., Poleshchuk, O. Kh., Filimonov, V.D.: Comparative analysis of a full-electron basis set and pseudopotential for the iodine atom in DFT quantum-chemical calculations of iodine-containing compounds. Russ. J. Struct. Chem. 49, 548–552 (2008)

    Article  Google Scholar 

  19. Pyykko, P.: Spectroscopic nuclear quadrupole moments. Mol. Phys. 99, 1617–1629 (2001)

    Article  ADS  Google Scholar 

  20. Glendening, E.D., Reed, A.E., Carpenter, J.E., Weinhold, F.: NBO Version 3.1

  21. ADF2016, SCM, Theoretical Chemistry. Vrije Universiteit, Amsterdam, http://www.scm.com/

  22. Handy, N.C., Cohen, A.J.: Left-right correlation energy. Mol. Phys. 99, 403–412 (2001)

    Article  ADS  Google Scholar 

  23. Perdew, J.P., Burke, K., Wang, Y.: Generalized gradient approximation for the exchange-correlation hole of a many-electron system. Phys. Rev. B 54, 16533–16539 (1996)

    Article  ADS  Google Scholar 

  24. te Velde, G., Bickelhaupt, F.M., van Gisbergen, S.J.A., et al.: Chemistry with ADF. J. Comput. Chem. 22, 931–967 (2001)

    Article  Google Scholar 

  25. Ziegler, T., Rauk, A.: On the calculation of bonding energies by the Hartree Fock Slater method. Theor. Chim. Acta 46, 1–10 (1977)

    Article  Google Scholar 

  26. Bazanov, S.S.: Structurnaya Khimia. Fakti I zavisimisti. Dialog MGU, Moscow (2000) 292p

    Google Scholar 

  27. Hargittai, M.: Molecular structure of metal halides. Chem. Rev. 100, 2233–2302 (2000)

    Article  Google Scholar 

  28. Forster, R.: Organic Charge-Transfer Complexes. Academic, New York (1969) 369p

    Google Scholar 

  29. Friedrich, H.B., Person, W.B.: Infrared Spectra of Charge-Transfer Complexes. VI. Theory. J. Chem. Phys. 44, 2161–2187 (1966)

    ADS  Google Scholar 

  30. Karpfen, A.: Theoretical characterization of the trends in halogen bonding. Struct. Bond. 126, 1–22 (2008)

    Article  Google Scholar 

  31. Guryanova, E.N., Goldshein, I.P., Romm, I.P.: Donorno-akceptornaya sviaz. Khimia, Moscow (1973) 400p

    Google Scholar 

  32. Legon, A.C.: Prereactive complexes of dihalogens XY with lewis bases B in the Gas phase: a systematic case for the halogen analogue B ⋯XY of the Hydrogen Bond B ⋯HX. Angew. Chem. Int. Ed. 38, 2686–2714 (1999)

    Article  Google Scholar 

  33. Ouvrard, C., Le Questel, J.-Y., Berthelot, M., Laurence, C.: Halogen-bond geometry: a crystallographic database investigation of dihalogen complexes. Acta Cryst. B59, 512–526 (2003)

    Article  Google Scholar 

  34. Poleshchuk, O. Kh., Latosinska, J.N., Koput, J., Nogaj, B.: Ab initio study of the bonding and nuclear quadrupole coupling in the PyICl complex. J. Mol. Struct. 513, 29–34 (1999)

    Article  ADS  Google Scholar 

  35. Frenking, G., Frohlich, N.: The nature of the bonding in transition-metal compounds. Chem. Rev. 100, 717–774 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Kh. Poleshchuk.

Additional information

This article is part of the Topical Collection on Proceedings of the International Conference on Hyperfine Interactions and their Applications (HYPERFINE 2016), Leuven, Belgium, 3–8 July 2016

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Poleshchuk, O.K., Fateev, A.V., Yarkova, A.G. et al. Study of chemical bonding in the interhalogen complexes based on density functional theory. Hyperfine Interact 237, 144 (2016). https://doi.org/10.1007/s10751-016-1357-7

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s10751-016-1357-7

Keywords

Navigation