Skip to main content
Log in

Structural and hyperfine properties of Mn and Co-incorporated akaganeites

  • Published:
Hyperfine Interactions Aims and scope Submit manuscript

Abstract

The structural and hyperfine properties of pure and substituted akaganeites prepared in the presence of Mn, Co and urea are presented and discussed. In all samples, the chloride content increased with the increase in the urea concentration of the parent solution, and a small Mn-for-Fe or Co-for-Fe substitution occurred. In pure akaganeites, the increase of urea concentration provoked an enlargement of the unit cell volume and a decrease of the crystallinity of the synthesised oxides. The incorporation of Mn and Co provoked changes in cell parameters and an increase in the crystallinity of the samples. The hyperfine parameters for both iron sites of the akaganeites remained practically unchanged, and the spectral areas of the iron sites located close to the chlorides decreased for the doped samples. The recoilless f-factor increased for the substituted akaganeites, indicating an increase in the strength of the atomic bonding of the iron ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Holm, N.G., Dowler, M.J., Wadsten, T., Arrhenius, G.: β-FeOOH.Cln (akaganéite) and Fe1-xO (wüstite) in hot brine from the Atlantis II Deep (Red Sea) and the uptake of amino acids by synthetic β-FeOOH.Cln. Geochim. Cosmochim. Acta 47, 1465–1470 (1983)

    Article  ADS  Google Scholar 

  2. Holtstam, D.: Akaganéite as a corrosion product of natural, non-meteoritic iron from Qeqertarsuaq. West Greenland GFF 128, 69–71 (2006)

    Google Scholar 

  3. Rémazeilles, C., Refait, P.: On the formation of β-FeOOH (akaganéite) in chloride-containing environments. Corros. Sci. 49, 844–857 (2007)

    Article  Google Scholar 

  4. Buchwald, V.F., Clarke Jr., R.S.: Corrosion of Fe-Ni alloys by Cl-containing akageneite (beta-FeOOH): the Antarctic meteorite case. Am. Mineral. 74, 656–67 (1989)

    Google Scholar 

  5. Post, J.E., Buchwald, V.F.: Crystal structure refinement of akaganéite. Am. Mineral. 76, 272–277 (1991)

    Google Scholar 

  6. Keller, P.: Eigenschaften von (Cl,F,OH)<2Fe8(O,OH)16 und Akaganeite. Neues Jahrb. Mineral. Abh. 113, 29–49 (1970)

    Google Scholar 

  7. Dasgupta, D.R., Mackay, A.L.: J. Phys. Soc. Jpn. 14, 932–935 (1959)

    Article  ADS  Google Scholar 

  8. Mackay, A.L.: Mineral. Mag. 32, 545–557 (1960)

    Article  Google Scholar 

  9. Cai, J., Liu, J., Gao, Z., Navrotsky, A., Suib, S.: Synthesis and anion exchange of tunnel structure akaganeite. Chem. Mater. 13, 4595–4602 (2001)

    Article  Google Scholar 

  10. Post, J.E., Heaney, P.J., Von Dreele, R.B., Hanson, J.C.: Am. Mineral. 88, 782–788 (2003)

    Google Scholar 

  11. Stahl, K., Nielsen, K., Jiang, J., Lebech, B., Hanson, J.C., Norby, P., van Lanschot, J.: Neutron and temperature resolved synchrotron X-ray powder diffraction study of akaganeite. Corros. Sci. 45, 2563–2575 (2003)

    Article  Google Scholar 

  12. Murad, E.: Mössbauer spectroscopy of clays, soils and their mineral constituents. Clay Miner. 45, 413–430 (2010)

    Article  Google Scholar 

  13. Barrero, C.A., García, K.E., Morales, A.L., Kodjikian, S., Greneche J.M.: New analysis of the Mössbauer spectra of akaganeite. J. Phys.: Condens. Matter. 18, 6827–6840 (2006)

    Article  ADS  Google Scholar 

  14. Murad, E., Cashion, J.: Mössbauer spectroscopy of environmental materials and their industrial utilization. Kluwer, Academic Publishers, Boston (2004)

    Book  Google Scholar 

  15. Oh, S.J., Cook, D.E.: Mössbauer effect determination of relative recoilless fractions for iron oxides. J. Appl. Phys. 85, 329–332 (1999)

    Article  ADS  Google Scholar 

  16. De Grave, E., Van Alboom, A.: Phys. Chem. Miner. 18, 337–342 (1991)

    Article  ADS  Google Scholar 

  17. Vertes, A., Czakó-Nagy, I.: Electrochim. Acta 34, 721–758 (1989)

    Article  Google Scholar 

  18. Cornell, R.M., Schwertmann, U.: The iron oxides: structure, properties, reactions, occurrence and uses. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim (2003)

    Book  Google Scholar 

  19. Ishikawa, T., Katoh, R., Yasukawa, A., Kandori, K., Nakayama, T., Yuse, F.: Corros. Sci. 43, 1727–1738 (2001)

    Article  Google Scholar 

  20. García, K.E., Morales, A.L., Greneche, J.M., Barrero, C.A.: 57Fe Mössbauer study of β-FeOOH obtained in presence of Al3 +  and Ti4 +  íons. Physica B: Condens. Matter. 389, 88–93 (2007)

    Article  ADS  Google Scholar 

  21. García, K.E., Barrero, C.A., Morales, A.L., Greneche, J.M.: Characterization of akaganeite synthesized in presence of Al3 + , Cr3 + , and Cu2 + ions and urea. Mater. Chem. Phys. 112, 120–126 (2008)

    Article  Google Scholar 

  22. Cornell, R.M.: Preparation and Properties of Si Substituted Akaganeite (b-FeOOH). Zeitschrift für Pflanzenernährung und Bodenkunde. J. Plant. Nutr. Soil Sci. 155, 449–453 (1992)

    Article  Google Scholar 

  23. Holm, N.G.: Substitution selectivity of some transition elements (Cr, Mn, Co, Ni, Cu, Zn) during formation of β-FeOOH. GFF Stockholm 107, 297–300 (1985)

    Google Scholar 

  24. Leussing, D.L., Newman, L.: Spectrophotometric study of the bleaching of ferric thioglycolate. J. Am. Chem. Soc. 78, 552–556 (1956)

    Article  Google Scholar 

  25. Larson, A.C., Von Dreele, R.B.: General structure analysis system (GSAS) Los Alamos National Laboratory Report LAUR, pp. 86–748 (1994)

  26. Toby, B.H.: EXPGUI, a graphical user interface for GSAS. J. Appl. Crystallogr. 34, 210–213 (2001)

    Article  Google Scholar 

  27. Thompson, P., Cox, D.E., Hastings, J.B.: Rietveld refinement of Debye-Scherrer Synchrotron X-ray data from Al2O3. J. Appl. Crystallogr. 20, 79–83 (1987)

    Article  Google Scholar 

  28. Vandenberghe, R.E., De Grave, E., De Bakker, P.M.A.: On the methodology of the analysis of Mössbauer spectra. Hyperfine Interact. 83, 29–49 (1994)

    Article  ADS  Google Scholar 

  29. Baes, C.F.J., Mesmer, R.E.: The hydrolisis of cations. Wiley Interscience, New York (1976)

    Google Scholar 

  30. http://abulafia.mt.ic.ac.uk/shannon/ptable.php. Consulted on Jan. 21, 2013

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elsa E. Sileo.

Additional information

Proceedings of the Thirteenth Latin American Conference on the Applications of the Mössbauer Effect, (LACAME 2012), Medellín, Columbia, 11–16 November 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tufo, A.E., García, K.E., Barrero, C.A. et al. Structural and hyperfine properties of Mn and Co-incorporated akaganeites. Hyperfine Interact 224, 239–250 (2014). https://doi.org/10.1007/s10751-013-0830-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10751-013-0830-9

Keywords

Navigation