Skip to main content
Log in

Modelling the growth of a protogynous sparid species, Spondyliosoma cantharus (Teleostei: Sparidae)

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Age determination of fish species is a key process for fisheries management and the accuracy of assessments is highly dependent on age estimates. To model complex life histories such as protogynous hermaphroditism, the growth curve to fit the age-length data should be carefully chosen. For the first time, the first annual growth increment of Spondyliosoma cantharus was validated and several growth functions were applied, in order to find the best growth model. S. cantharus specimens ranged from 2.1 to 38 cm total length and were aged from 0 to 17 years. For the growth functions applied, the hyperbolic modifications of von Bertalanffy curve showed the best fit to the data. Under this model, a change in growth occurs at 8 years, which corresponds to the average age for sex reversal in the species. Estimated total mortality was similar for the two years studied, varying between 0.65 and 0.69 year−1. Natural mortality was estimated by the updated Hoenignls t max-based estimator and the Paulynls-T estimator, ranged between 0.26 and 0.37 year−1. Fishing mortality (0.28–0.43 year−1) and exploitation rate (0.43–0.62) were relatively high, indicating that although the species is not a main target its management needs careful attention.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abecasis, D., L. Bentes, R. Coelho, C. Correia, P. G. Lino, P. Monteiro, J. M. S. Gonçalves, J. Ribeiro & K. Erzini, 2008. Ageing seabreams: a comparative study between scales and otoliths. Fisheries Research 89: 37–48.

    Article  Google Scholar 

  • Akaike, H., 1973. Information theory and an extension of the maximum likelihood principle. In Petrov, B. N. & F. Csaki (eds), Second International Symposium on Information Theory. Akademiai Kiado, Budapest: 267–281.

    Google Scholar 

  • Alonzo, S. H. & M. Mangel, 2004. The effects of size-selective fisheries on the stock dynamics of and sperm limitation in sex changing fish: California sheephead (Semicossyphus pulcher) as an illustrative example. Fishery Bulletin 102: 1–13.

    Google Scholar 

  • Alós, J., M. Palmer, S. Balle, A. M. Grau & B. Morales-Nin, 2010. Individual growth pattern and variability in Serranus scriba: a Bayesian analysis. ICES Journal of Marine Science 67: 502–512.

    Article  Google Scholar 

  • Baty, F., C. Ritz, S. Charles, M. Brutsche, J.-P. Flandrois & M.-L. Delignette-Muller, 2015. A toolbox for nonlinear regression in R: the package nlstools. Journal of Statistical Software 66: 1–21.

    Article  Google Scholar 

  • Bauchot, M. L. & J. C. Hureau, 1986. Sparidae. In Whitehead, P. J. P., M. L. Bauchot, J. C. Hureau, J. Nielsen & E. Tortonese (eds), Fishes of the North-Eastern Atlantic and the Mediterranean. UNESCO, Paris: 883–907.

    Google Scholar 

  • Beamish, R. J. & D. A. Fournier, 1981. A method for comparing the precision of a set of age determinations. Canadian Journal of Fisheries and Aquatic Sciences 38: 982–983.

    Article  Google Scholar 

  • Bilge, G., S. Yapıcı, H. Filiz & H. Cerim, 2014. Weight–length relations for 103 fish species from the southern Aegean Sea, Turkey. Acta Ichthyologica Et Piscatoria 44: 263–269.

    Article  Google Scholar 

  • Bradai, M. N., M. Ghorbel, O. Jarboui & A. Bouain, 1998. Croissance de trois espèces de sparidés: Diplodus puntazzo, Diplodus vulgaris et Spondyliosoma cantharus du golfe de Gabès (Tunisie). In Lleonart, J. (ed.), Dynamique des populations marines, Vol. 35. Zaragoza: CIHEAM, Cahiers Options Méditerranéennes: 51–56.

  • Boughamou, N., F. Derbal & M. H. Kara, 2015. Age, growth and reproduction of the black sea bream Spondyliosoma cantharus (Linnaeus, 1758) (Sparidae) in the Gulf of Annaba (Algeria). Journal of Applied Ichthyology 31: 773–779.

    Article  Google Scholar 

  • Campana, S. E., 2001. Accuracy, precision and quality control in age determination, including a review of the use and abuse of age validation methods. Journal of Fish Biology 59: 197–242.

    Article  Google Scholar 

  • Campana, S. E., M. C. Annand & J. I. McMillan, 1995. Graphical and statistical methods for determining the consistency of age determinations. Transactions of the American Fisheries Society 124: 131–138.

    Article  Google Scholar 

  • Campos, A., P. Fonseca, T. Fonseca & J. Parente, 2007. Definition of fleet components in the Portuguese bottom trawl fishery. Fisheries Research 83: 185–191.

    Article  Google Scholar 

  • Chapman, D. G. & D. S. Robson, 1960. The analysis of a catch curve. Biometrics 16: 354–368.

    Article  Google Scholar 

  • Charnov, E. L., 2008. Fish growth: Bertalanffy k is proportional to reproductive effort. Environmental Biology of Fishes 83: 185–187.

    Article  Google Scholar 

  • Chang, W. Y. B., 1982. A statistical method for evaluating the reproducibility of age determination. Canadian Journal of Fisheries and Aquatic Sciences 39: 1208–1210.

    Article  Google Scholar 

  • Derbal, F., S. Madache, N. Boughamou & M. H. Kara, 2010. Lenght-weight Relationships and Reproduction of Three Coastal Sparidae (Diplodus cervinus cervinus, Boops boops, and Spondyliosoma cantharus) of the Eastern Coast of Algeria. In Ceccaldi, H.-J., I. Dekeyser, M. Girault & G. Stora (eds), Global Change: Mankind-Marine Environment Interactions, Proceedings of the 13th French-Japanese Oceanography Symposium: 367–369.

  • DGRM, 2016. Tamanhos Mínimos. Direcção Geral de Recursos Naturais, Segurança e Serviços Marítimos. https://www.dgrm.mm.gov.pt/xeo/attachfileu.jsp?look_parentBoui=3200231&att_display=n&att_download=y. Accessed 27.02.17

  • Dulčić, J. & M. K. Kraljević, 1996. Growth of the black sea bream Spondyliosoma cantharus (L.) in the eastern middle Adriatic. Archive of Fishery and Marine Research 44: 279–293.

    Google Scholar 

  • Dunn, A., R. Francis & I. J. Doonan, 2002. Comparison of the Chapman-Robson and regression estimators of Z from catch-curve data when non-sampling stochastic error is present. Fisheries Research 59: 149–159.

    Article  Google Scholar 

  • Gayanilo, F. C., P. Sparre & D. Pauly, 2005. FAO-ICLARM Stock Assessment Tools II: User’s Guide. Food and Agriculture Organization of the United Nations, Rome.

    Google Scholar 

  • Gislason, H., N. Daan, J. C. Rice & J. G. Pope, 2010. Size, growth, temperature and the natural mortality of marine fish. Fish and Fisheries 11: 149–158.

    Article  Google Scholar 

  • Gonçalves, J. M. S. & K. Erzini, 2000. The reproductive biology of Spondyliosoma cantharus (L.) from the SW Coast of Portugal. Scientia Marina 64: 403–411.

    Article  Google Scholar 

  • Gordo, L. S. & H. N. Cabral, 2001. The fish assemblage structure of a hydrologically altered coastal lagoon: the Óbidos lagoon (Portugal). Hydrobiologia 459: 125–133.

    Article  Google Scholar 

  • Higgins, R. M., E. Diogo & J. Isidro, 2015. Modelling growth in fish with complex life histories. Reviews in Fish Biology and Fisheries 25: 449–462.

    Article  Google Scholar 

  • Hoenig, J. M., M. J. Morgan & C. A. Brown, 1995. Analysing differences between two age determination methods by tests of symmetry. Canadian Journal of Fisheries and Aquatic Sciences 52: 364–368.

    Article  Google Scholar 

  • Hoffman, S. G., M. P. Schildauer & R. R. Warner, 1985. The costs of changing sex and the ontogeny of males under contest competition for mates. Evolution 39: 915–927.

    Article  PubMed  Google Scholar 

  • Huse, I., A. C. Gundersen & K. H. Nedreaas, 1999. Relative selectivity of Greenland halibut (Reinhardtius hippoglossoides, Walbaum) by trawls, longlines and gillnets. Fisheries Research 44: 75–93.

    Article  Google Scholar 

  • Johnson, K. F., C. C. Monnahan, C. R. McGilliard, K. A. Vert-pre, S. C. Anderson, C. J. Cunningham, F. Hurtado-Ferro, R. R. Licandeo, M. L. Muradian, K. Ono, C. S. Szuwalski, J. L. Valero, A. R. Whitten & A. E. Punt, 2015. Time-varying natural mortality in fisheries stock assessment models: identifying a default approach. ICES Journal of Marine Science 72: 137–150.

    Article  Google Scholar 

  • King, M., 2007. Bhattacharya Plots. In: Fisheries Biology, Assessment and Management, 2nd edn, Blackwell Publishing Ltd., Oxford, UK: 368–371.

  • Labropoulou, M. & C. Papaconstantinou, 2000. Comparison of otolith growth and somatic growth in two macrourid fishes. Fisheries Research 46: 177–188.

    Article  Google Scholar 

  • Lorenzo, J. M. & J. M. G. Pajuelo, 1997. Edad y crecimiento de la chopa Spondyliosoma cantharus (Linnaeus, 1758) (Sparidae) en las islas Canarias. Boletín. Instituto Español de Oceanografía 13: 67–73.

    Google Scholar 

  • Maunder, M. N. & K. R. Piner, 2015. Contemporary fisheries stock assessment: many issues still remain. ICES Journal of Marine Science 72: 7–18.

    Article  Google Scholar 

  • Minte-Vera, C. V., M. N. Maunder, J. M. Casselman & S. E. Campana, 2016. Growth functions that incorporate the cost of reproduction. Fisheries Research 180: 31–44.

    Article  Google Scholar 

  • Morales-Nin, B., 2001. Mediterranean deep-water fish age determination and age validation: the state of the art. Fisheries Research 51: 377–383.

    Article  Google Scholar 

  • Mouine-Oueslati, N., R. Ahlem, C. Ines, M.-H. Ktari & N. Chakroun-Marzouk, 2015. Age and growth of Spondyliosoma cantharus (Sparidae) in the Gulf of Tunis. Scientia Marina 79: 319–324.

    Article  Google Scholar 

  • Murphy, M. D., 1997. Bias in Chapman-Robson and least squares estimators of mortality rates for steady state populations. Fishery Bulletin 95: 863–868.

    Google Scholar 

  • Ogle, D.H., 2016. FSA: Fisheries Stock Analysis. R package version 0.8.8.

  • Pajuelo, J. G. & J. M. Lorenzo, 1999. Life history of black seabream Spondyliosoma cantharus (Linnaeus, 1758), off the Canary Islands, Central-east Atlantic. Environmental Biology of Fishes 54: 325–336.

    Article  Google Scholar 

  • Panfili, J. & B. Morales-Nin, 2002. Validation and verification methods. B. Semi-direct validation. In Panfili, J., H. Pontual, H. Troadec & P. J. Wright (eds), Manual of fish sclerochronology. Ifremer-lRD coedition, Brest, France: 129–133.

    Google Scholar 

  • Rasband, W.S., 1997–2016. ImageJ, U. S. National Institutes of Health, Bethesda, Maryland, USA. http://imagej.nih.gov/ij/

  • Ricker, W. E., 1975. Computation and interpretation of biological statistics of fish populations. Bulletin of the Fisheries Research Board of Canada 191: 29–73.

    Google Scholar 

  • Samamé, M., 1977. Determinación de la edad y crecimiento de la sardine Sardinops sagax (J). Boletin del Instituto del Mar del Peru 3: 95–112.

    Google Scholar 

  • Soriano, M., J. Moreau, J. M. Hoenig & D. Pauly, 1992. New functions for the analysis of two-phase growth of juvenile and adult fishes, with application to Nile Perch. Transactions of the American Fisheries Society 121: 486–493.

    Article  Google Scholar 

  • Smith, M. W., A. Y. Then, C. Wor, G. Ralph, K. H. Pollock & J. M. Hoenig, 2012. Recommendations for catch-curve analysis. North American Journal of Fisheries Management 32: 956–967.

    Article  Google Scholar 

  • Then, A. Y., J. M. Hoenig, N. G. Hall & D. A. Hewitt, 2015. Evaluating the predictive performance of empirical estimators of natural mortality rate using information on over 200 fish species. ICES Journal of Marine Science 72: 82–92.

    Article  Google Scholar 

  • Veiga, P., J. M. S. Gonçalves & K. Erzini, 2011. Short-term hooking mortality of three marine fish species (Sparidae) caught by recreational angling in the south Portugal. Fisheries Research 108: 58–64.

    Article  Google Scholar 

  • von Bertalanffy, L., 1938. A quantitative theory of organic growth (inquiries of growth laws II). Human Biology 10: 181–213.

    Google Scholar 

  • Zar, J. H., 1996. Biostatistical analysis, 3rd ed. Prentice Hall, Upper Saddle River.

    Google Scholar 

  • Zuur, G., R. J. Fryer, R. S. T. Ferro & T. Tokai, 2001. Modeling the size selectivities of a trawl codend and an associated square mesh panel. ICES Journal of Marine Science 58: 657–671.

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Dr. Ricardo Lemos for his help on applying the 5VBGF and to the two anonymous reviewers whose valuable comments and suggestions help to improve this manuscript. This study was partially supported by Fundação para a Ciência e a Tecnologia (FCT), through the strategic project UID/MAR/04292/2013 granted to MARE and the grants attributed to Ana Rita Vieira (SFRH/BD/73506/2010), Vera Sequeira (SFRH/BPD/70200/2010), Rafaela Barros Paiva (SFRH/BD/80268/2011), and Ana Neves (SFRH/BD/92769/2013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Neves.

Additional information

Handling editor: Ingeborg Palm Helland

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Neves, A., Vieira, A.R., Sequeira, V. et al. Modelling the growth of a protogynous sparid species, Spondyliosoma cantharus (Teleostei: Sparidae). Hydrobiologia 797, 265–275 (2017). https://doi.org/10.1007/s10750-017-3188-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-017-3188-1

Keywords

Navigation