Skip to main content
Log in

Identifying the source population of fish re-colonizing an arid-land stream following wildfire-induced extirpation using otolith microchemistry

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Movement is necessary for re-colonization of habitats following disturbance, but methods to estimate dispersal of small-bodied fishes are limited. We evaluated the efficacy of otolith microchemistry in identifying habitat origin of longfin dace Agosia chrysogaster in the Gila River, NM, USA. Additionally, we used this method to determine the source population of speckled dace Rhinichthys osculus that re-colonized a tributary reach following wildfire-induced extirpation. We determined otolith microchemical analysis was possible after finding elevated ambient water concentrations of Mg, Mn, and Sr in the disturbed tributary both before and after wildfire relative to other source streams. These water chemistry differences allowed us to test if speckled dace were derived from downstream populations, or from those potentially persisting within refugia in the fire-affected tributary. We found that otolith signatures consistently reflected water chemistry patterns for Mn and Sr, allowing us to classify individuals to known capture locations 86% (range = 74–100%) of the time. Otolith microchemistry techniques then revealed that 88% of speckled dace that re-colonized the fire-affected tributary reach were derived from refuge populations within the tributary. Our results indicated that otolith microchemistry could be an important tool for characterizing re-colonization dynamics of fish populations residing in chemically heterogeneous stream networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Acuña, V. & C. M. Dahm, 2007. Impact of monsoonal rains on spatial scaling patterns in water chemistry of a semiarid river network. Journal of Geophysical Research 112: G04009.

    Article  Google Scholar 

  • Adams, S. B. & M. L. Warren Jr., 2005. Recolonization by warmwater fishes and crayfishes after severe drought in upper coastal plain hill streams. Transactions of the American Fisheries Society 134: 1173–1192.

    Article  Google Scholar 

  • Brennan, S. R., C. E. Torgersen, J. P. Hollenbeck, D. P. Fernandez, C. K. Jensen, & D. E. Schindler, 2016. Dendritic network models: improving isoscapes and quantifying influence of landscape and in-stream processes on strontium isotopes in rivers. Geophysical Research Letters 43: 1–9.

    Article  Google Scholar 

  • Brown, J. H. & A. Kodric-Brown, 1977. Turnover rates in insular biogeography: effect of immigration and extinction. Ecology 58: 445–449.

    Article  Google Scholar 

  • Campana, S. E., 1999. Chemistry and composition of fish otoliths: pathways, mechanisms, and applications. Marine Ecology Progress Series 188: 263–297.

    Article  CAS  Google Scholar 

  • Campana, S. E., S. R. Thorrold, C. M. Jones, D. Gunther, M. Tubrett, H. Longerich, S. Jackson, N. M. Halden, J. M. Kalish, P. Piccoli, H. Depontual, H. Troadec, J. Panfili, D.H. Secor, K. P. Severin, S. H. Sie, R. Thresher, W. J. Teesdale & J. L. Campbell, 1997. Comparison of accuracy, precision, and sensitivity in elemental assays of fish otoliths using electron microprobe, proton-induced X-ray emission, and laser ablation inductively coupled plasma mass spectrometry. Canadian Journal of Fisheries and Aquatic Sciences 54: 2068–2079.

    Article  Google Scholar 

  • Carlson, A. K., M. J. Fincel & B. D. S. Graeb. 2016. Otolith microchemistry reveals natal origins of walleyes in Missouri River reservoirs. North American Journal of Fisheries Management 36: 341–350.

    Article  Google Scholar 

  • Chase, N. M., C. A. Caldwell, S. A. Carleton, W. R. Gould & J. A. Hobbs, 2015. Movement patterns and dispersal potential of Pecos bluntnose shiner (Notropis simus pecosensis) revealed using otolith microchemistry. Canadian Journal of Fisheries and Aquatic Sciences 72: 1575–1583.

    Article  Google Scholar 

  • Collingsworth, P. D., J. J. Van Tassell, J. W. Olesik & E. A. Marschall, 2010. Effect of temperature and elemental concentration on the chemical composition of juvenile yellow perch (Perca flavescens) otoliths. Canadian Journal of Fisheries and Aquatic Sciences 67: 1187–1196.

    Article  CAS  Google Scholar 

  • Collins, S. M., N. Bickford, P. B. McIntyre, A. Coulon, A. J. Ulseth, D. C. Taphorn & A. S. Flecker, 2013. Population structure of a Neotropical migratory fish: contrasting perspectives from genetics and otolith microchemistry. Transactions of the American Fisheries Society 142: 1192–1201.

    Article  Google Scholar 

  • Detenbeck, N. E., P. W. DeVore, G. J. Niemi & A. Lima, 1992. Recovery of temperate stream fish communities from disturbance: a review of case studies and synthesis of theory. Environmental Management 16: 33–53.

    Article  Google Scholar 

  • Eaton, A. D. & M. A. H. Franson, 2005. Standard Methods for the Examination of Water and Wastewater, 21st edition. American Public Health Association, Washington, D.C.

    Google Scholar 

  • Elsdon, T. S. & B. M. Gillanders, 2002. Interactive effects of temperature and salinity on otolith chemistry: challenges for determining environmental histories of fish. Canadian Journal of Fisheries and Aquatic Sciences 59: 1796–1808.

    Article  CAS  Google Scholar 

  • Elsdon, T. S. & B. M. Gillanders, 2003. Reconstructing migratory patterns of fish based on environmental influences on otolith chemistry. Reviews in Fish Biology and Fisheries: 13: 219–235.

    Article  Google Scholar 

  • Falke, J. A. & K. D. Fausch, 2010. From metapopulations to metacommunities: linking theory with empirical observations of the spatial population dynamics of stream fishes. In Gido, K. B. & D. A. Jackson (eds), Community Ecology of Stream Fishes: Concepts, Approaches, and Techniques. American Fisheries Society, Symposium 73, Bethesda: 207–233.

  • Fausch, K. D., C. E. Torgersen, C. V. Baxter & H. W. Li, 2002. Landscapes to riverscapes: bridging the gap between research and conservation of stream fishes. Bioscience 52:483–498.

    Article  Google Scholar 

  • Feyrer, F., J. Hobbs, M. Baerwald, T. Sommer, Q. Z. Yin, K. Clark, B. May & W. Bennett, 2007. Otolith microchemistry provides information complementary to microsatellite DNA for a migratory fish. Transactions of the American Fisheries Society 136: 469–476.

    Article  CAS  Google Scholar 

  • Finch, H., 2005. Comparison of the performance of nonparametric and parametric MANOVA test statistics when assumptions are violated. Methodology 1: 27–38.

    Article  Google Scholar 

  • Fraser, D. J., C. Lippé & L. Bernatchez, 2004. Consequences of unequal population size, asymmetric gene flow and sex-biased dispersal on population structure in brook charr (Salvelinus fontinalis). Molecular Ecology 13: 67–80.

    Article  CAS  PubMed  Google Scholar 

  • Gauldie, R. W., 1993. Polymorphic crystalline structure of fish otoliths. Journal of Morphology 218: 1–28.

    Article  Google Scholar 

  • Gauldie, R. W., 1996. Effects of temperature and vaterite replacement on the chemistry of metal ions in the otoliths of Oncorhynchus tshawytscha. Canadian Journal of Fisheries and Aquatic Sciences 53: 2015–2026.

    Article  CAS  Google Scholar 

  • Gillanders, B. M., 2005. Otolith chemistry to determine movements of diadromous and freshwater fish. Aquatic Living Resources 18: 291–300.

    Article  CAS  Google Scholar 

  • Hamann, E. J. & B. P. Kennedy, 2012. Juvenile dispersal affects straying behavior of adults in a migratory population. Ecology 93: 733–740.

    Article  PubMed  Google Scholar 

  • Hanski, I. & D. Simberloff, 1997. The metapopulation approach, its history, conceptual domain, and application to conservation. In Hanski, I. & M. E. Gilpin (eds), Metapopulation Biology: Ecology, Genetics, and Evolution. Academic Press, San Diego: 1–26.

    Google Scholar 

  • Hayden, T. A., K. E. Limburg & W. E. Pine III, 2013. Using otolith chemistry tags and growth patterns to distinguish movements and provenance of native fish in the Grand Canyon. River Research and Applications 29: 1318–1329.

    Article  Google Scholar 

  • Hedden, S. C., K. B. Gido, & J. E. Whitney, 2016. Introduced flathead catfish consumptive demand on native fishes of the Upper Gila River, New Mexico. North American Journal of Fisheries Management 36: 55–61.

    Article  Google Scholar 

  • Hedges, K. J., S. A. Ludsin & B. J. Fryer, 2004. Effects of ethanol and preservation on otolith microchemistry. Journal of Fish Biology 64: 923–937.

    Article  CAS  Google Scholar 

  • Humston, R., B. M. Priest, W. C. Hamilton & P. E. Bugas Jr., 2010. Dispersal between tributary and main-stem rivers by juvenile smallmouth bass evaluated using otolith microchemistry. Transactions of the American Fisheries Society 139: 171–184.

    Article  CAS  Google Scholar 

  • Jackson, S., 2008. LAMTRACE data reduction software for LA-ICP-MS. In Sylvester, P. (ed.), Laser Ablation-ICP-Mass Spectrometry in the Earth Sciences: Current Practices and Outstanding Issues, Series 40. Mineralogical Association of Canada Short Course: 305–307.

  • Jager, H. I., J. A. Chandler, K. B. Lepla & W. Van Winkle, 2001. A theoretical study of river fragmentation by dams and its effects on white sturgeon populations. Environmental Biology of Fishes 60: 347–361.

    Article  Google Scholar 

  • Jarek, S., 2012. mvnormtest: Normality test for multivariate variables. R Package version 0.1-9. http://CRAN.R-project.org/package=mvnormtest.

  • Kennedy, B. P., A. Klaue, J. D. Blum, C. L. Folt & K. H. Nislow, 2002. Reconstructing the lives of fish using Sr isotopes in otoliths. Canadian Journal of Fisheries and Aquatic Sciences 59: 925–929.

    Article  Google Scholar 

  • Kubach, K. M., M. C. Scott & J. S. Bulak, 2011. Recovery of a temperate riverine fish assemblage from a major diesel oil spill. Freshwater Biology 56: 503–518.

    Article  Google Scholar 

  • Labbe, T. R. & K. D. Fausch, 2000. Dynamics of intermittent stream habitat regulate persistence of a threatened fish at multiple scales. Ecological Applications 10: 1774–1791.

    Article  Google Scholar 

  • Lachenbruch, P. A. & M. Goldstein, 1979. Discriminant analysis. Biometrics 1979: 69–85.

    Article  Google Scholar 

  • Lenaz, D., M. Hiletic, E. Pizzul, S. Vanzo & G. Adami, 2006. Mineralogy and geochemistry of otoliths in freshwater fish from northern Italy. European Journal of Mineralogy 18: 143–148.

    Article  CAS  Google Scholar 

  • Limburg, K. E., T. A. Hayden, W. E. Pine III, M. D. Yard, R. Kozdon & J. W. Valley, 2013. Of travertine and time: otolith chemistry and microstructure detect provenance and demography of endangered humpback chub in Grand Canyon, USA. PLoS ONE 8: e84235.

    Article  PubMed  PubMed Central  Google Scholar 

  • Longerich, H. P., S. E. Jackson & D. Günther, 1996. Laser ablation-inductively coupled plasma- mass-spectrometric transient signal data acquisition and analyte concentration calculation. Journal of Analytical Atomic Spectrometry 11: 899–904.

    Article  CAS  Google Scholar 

  • Ludsin, S. A., B. J. Fryer & J. E. Gagnon, 2006. Comparison of solution-based versus laser ablation inductively coupled plasma mass spectrometry for analysis of larval fish otolith microelemental composition. Transactions of the American Fisheries Society 135: 218–231.

    Article  Google Scholar 

  • MacDonald, J. I., D. G. McNeil & D. A. Crook, 2012. Asteriscus v. lapillus: comparing chemistry of two otolith types and their ability to delineate riverine populations of common carp Cyprinus carpio. Journal of Fish Biology 81: 1715–1729.

    Article  CAS  PubMed  Google Scholar 

  • McMahon, T. E. & W. J. Matter, 2006. Linking habitat selection, emigration, and population dynamics of freshwater fishes: a synthesis of ideas and approaches. Ecology of Freshwater Fish 15: 200–210.

    Article  Google Scholar 

  • Melancon S., B. J. Fryer, S. A. Ludsin, J. E. Gagnon & Z. Yang, 2005. Effects of crystal structure on the uptake of metals by lake trout (Salvelinus namaycush) otoliths. Canadian Journal of Fisheries and Aquatic Sciences 62: 2609–2619.

    Article  CAS  Google Scholar 

  • Milton, D. A. S. R. Chenery, 1998. The effect of otolith storage methods on the concentrations of elements detected by laser ablation ICPMS. Journal of Fish Biology 53: 785–794.

    Article  CAS  Google Scholar 

  • Morrissey, M. B. & D. T. de Kerckhove, 2009. The maintenance of genetic variation due to asymmetric gene flow in dendritic metapopulations. The American Naturalist 174: 874–889.

    Article  Google Scholar 

  • New Mexico Bureau of Geology and Mineral Resources (NMBGR), 2003. Geologic map of New Mexico 1:500,000. New Mexico Bureau of Geology and Mineral Resources.

  • Olsson, P. E., P. Kling & C. Hogstrand, 1998. Mechanisms of heavy metal accumulation and toxicity in fish. In Langston, W. J. & M. J. Bebianno (eds), Metal Metabolism in Aquatic Environments. Chapman and Hall, London: 321–350.

    Chapter  Google Scholar 

  • Pilger, T. J. 2015. Conservation Genetics at the interface of theory and application. Dissertation, University of New Mexico. http://hdl.handle.net/1928/30411.

  • Pilger, T. J., K. B. Gido, D. L. Propst, J. E. Whitney & T. F. Turner, 2015. Comparative conservation genetics of protected endemic fishes in an arid-land riverscape. Conservation Genetics 16: 875–888.

    Article  CAS  Google Scholar 

  • Pracheil, B. M., J. D. Hogan, J. D. Lyons & P. B. McIntyre, 2014. Using hard-part microchemistry to advance conservation and management of North American freshwater fishes. Fisheries 39: 451–465.

    Article  Google Scholar 

  • Proctor, C. H. & R. E. Thresher, 1998. Effects of specimen handling and otolith preparation on concentration of elements in fish otoliths. Marine Biology 131: 681–694.

    Article  Google Scholar 

  • Propst, D. L., K. B. Gido & J. E. Stefferud, 2008. Natural flow regimes, nonnative fishes, and native fish persistence in arid-land river systems. Ecological Applications 18: 1236–1252.

    Article  PubMed  Google Scholar 

  • Pulliam, H. R., 1988. Sources, sinks, and population regulation. The American Naturalist 1988: 652–661.

    Article  Google Scholar 

  • R Core Team, 2015. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/.

  • Rieman, B. E. & J. B. Dunham, 2000. Metapopulations of salmonids: a synthesis of life history patterns and empirical observations. Ecology of Freshwater Fish 9: 51–64.

    Article  Google Scholar 

  • Rodrigo da Silva, A., 2015. biotools: Tools for biometry and applied statistics in agricultural science. R package version 2.2. http://CRAN.R-project.org/package=biotools.

  • Rodríguez, M. A., 2010. A modeling framework for assessing long-distance dispersal and loss of connectivity in stream fish. In Gido, K. B. & D. A. Jackson (eds), Community Ecology of Stream Fishes: Concepts, Approaches, and Techniques. American Fisheries Society Symposium 73, Bethesda: 263–279.

  • Schlosser, I. J., 1990. Environmental variation, life history attributes, and community structure in stream fishes: implications for environmental management and assessment. Environmental Management 14: 621–628.

    Article  Google Scholar 

  • Schlosser, I. J., 1991. Stream fish ecology: a landscape perspective. BioScience 41: 704–712.

    Article  Google Scholar 

  • Schlosser, I. J. & P. L. Angermeier, 1995. Spatial variation in demographic processes of lotic fishes: conceptual models, empirical evidence, and implications for conservation. In Nielsen, J. L. (ed.), Evolution of the Aquatic Ecosystem: Defining Unique Units in Population Conservation. American Fisheries Society Symposium 17, Bethesda: 392–401.

  • Secor, D. H., J. M. Dean & E. H. Laban, 1991. Manual for Otolith Removal and Preparation for Microstructural Examination. Vol. 1 Electric Power Research Institute, Palo Alto.

    Google Scholar 

  • Skalski, G. T. & J. F. Gilliam, 2000. Modeling diffusive spread in heterogeneous populations: a movement study with stream fish. Ecology 81: 1685–1700.

    Article  Google Scholar 

  • Skalski, G. T. & J. F. Gilliam, 2003. A diffusion-based theory of organism dispersal in heterogeneous populations. American Naturalist 161: 441–458.

    Article  PubMed  Google Scholar 

  • Sublette, J. H., M. D. Hatch & M. Sublette, 1990. The Fishes of New Mexico. University of New Mexico Press, Albuquerque.

    Google Scholar 

  • Tzeng, W.-N., C.-W. Chang, C.-H. Wang, J.-C. Shiao, Y. Iizuka, Y.-J. Yang, C.-F. You & L. Ložys, 2007. Misidentification of the migratory history of anguillid eels by Sr/Ca ratios of vaterite otoliths. Marine Ecology Progress Series 348: 285–295.

    Article  CAS  Google Scholar 

  • Veinott, G. I., T. R. Porter & L. Nasdala, 2009. Using Mg as a proxy for crystal structure and Sr as an indicator of marine growth in vaterite and aragonite otoliths of aquaculture rainbow trout. Transactions of the American Fisheries Society 138: 1157–1165.

    Article  CAS  Google Scholar 

  • Venables, W. N. & B. D. Ripley, 2002. Modern Applied Statistics with S 4th Edition. Springer, New York.

    Book  Google Scholar 

  • Walther, B. D., M. J. Kingsford, M. D. O’Callaghan & M. T. McCulloch, 2010. Interactive effects of ontogeny, food ration and temperature on elemental incorporation in otoliths of a coral reef fish. Environmental Biology of Fishes 89: 441–451.

    Article  Google Scholar 

  • Wells, B. K., B. E. Rieman, J. L. Clayton, D. L. Horan & C. M. Jones, 2003. Relationships between water, otolith, and scale chemistries of westslope cutthroat trout from the Coeur d’ Alene River, Idaho: the potential application of hard-part chemistry to describe movements in freshwater. Transactions of the American Fisheries Society 132: 409–424.

    Article  CAS  Google Scholar 

  • Whitney, J. E., K. B. Gido & D. L. Propst, 2014. Factors associated with the success of native and nonnative species in an unfragmented arid-land riverscape. Canadian Journal of Fisheries and Aquatic Sciences 71: 1134–1145.

    Article  Google Scholar 

  • Whitney, J. E., K. B. Gido, T. J. Pilger, D. L. Propst & T. F. Turner, 2015. Consecutive wildfires affect stream biota in cold- and warmwater dryland river networks. Freshwater Science 34: 1510–1526.

    Article  Google Scholar 

  • Whitney, J. E., K. B. Gido, T. J. Pilger, D. L. Propst & T. F. Turner, 2016. Metapopulation analysis indicates native and nonnative fishes responds differently to effects of wildfire on desert streams. Ecology of Freshwater Fish 25: 376–392.

    Article  Google Scholar 

  • Zeigler, J. M. & G. W. Whitledge, 2010. Assessment of otolith chemistry for identifying source environment of fishes in the lower Illinois River, Illinois. Hydrobiologia 638: 109–119.

    Article  CAS  Google Scholar 

  • Zeigler, J. M. & G. W. Whitledge, 2011. Otolith trace element and stable isotopic compositions differentiate fishes from the Middle Mississippi River, its tributaries, and floodplain lakes. Hydrobiologia 661: 289–302.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by a grant from the US Bureau of Reclamation Desert Landscape Conservation Cooperative and by a US Department of Education Graduate Assistance in Areas of National Need PhD Fellowship. We are also grateful to Martha Cooper of the Nature Conservancy, Tim Frey with Bureau of Land Management, and Kirk Pattern and Andrew Monié of the New Mexico Department of Game and Fish for providing logistical support, lodging, and study site access. Access to study sites was also provided by the US Forest Service and Bureau of Land Management. Garrett Hopper, Kevin Kirkbride, Danelle Larson, and Matt Troia assisted with field collections. Valuable technical assistance was provided by Michael Rawitch at the KU Plasma Analytical Lab. We are grateful to Kun Chen for providing R code for performing Box-Cox transformations. Previous versions of this manuscript benefitted from the insightful comments of two anonymous reviewers. Sampling was conducted under US Fish and Wildlife Services permit #TE067729-3, New Mexico Game and Fish Permit #3351, and Kansas State University IACUC protocol #3296.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James E. Whitney.

Additional information

Handling editor: Koen Martens

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Whitney, J.E., Gido, K.B., Hedden, S.C. et al. Identifying the source population of fish re-colonizing an arid-land stream following wildfire-induced extirpation using otolith microchemistry. Hydrobiologia 797, 29–45 (2017). https://doi.org/10.1007/s10750-017-3143-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-017-3143-1

Keywords

Navigation