Skip to main content

Advertisement

Log in

Soil type can determine invasion success of Eichhornia crassipes

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Invasive species benefit from advantageous trait values and/or trait plasticity in their invasion process when facing changing environments. However, few studies explored this mechanism on invasive macrophytes. The effects of soil on the invasion of macrophytes were studied little by previous researches. In the measurement of several traits related to resource utilization, we studied the plant responses to three representative types of riparian soil in Liangzi Lake, China. Using multi-species comparison, we explored the differences of trait values and trait plasticity among Eichhornia crassipes (Mart.) Solms and its non-invasive confamilial counterparts all in emergent life-form—exotic Pontederia cordata L. and native Monochoria vaginalis (Burm. f.) Presl ex Kunth. We measured leaf-level and root-level traits after harvest. We found that E. crassipes mainly showed trait value advantages in root-level traits in infertile soils, while some advantages of leaf-level traits were present but not obvious compared to the two confamilials. Besides, E. crassipes showed higher plasticity in several traits especially in some root-level traits than the two confamilials. We concluded that both trait values and trait plasticity especially in belowground traits play a crucial role in the invasion success of emergent E. crassipes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Arnon, D. I., 1949. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiology 24: 1–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Binkley, D. & P. Vitousek, 1989. Soil nutrient availability. In Pearcy, R. W., J. R. Ehleringer, H. A. Mooney & P. W. Rundel (eds), Plant Physiological Ecology—Field Methods and Instrumentation. Chapman and hall, London: 75–96.

    Chapter  Google Scholar 

  • Caplan, J. S. & J. A. Yeakley, 2013. Functional morphology underlies performance differences among invasive and non-invasive ruderal Rubus species. Oecologia 173: 363–374.

    Article  PubMed  Google Scholar 

  • Davis, M. A., J. P. Grime & K. Thompson, 2000. Fluctuating resources in plant communities: a general theory of invasibility. Journal of Ecology 88: 528–534.

    Article  Google Scholar 

  • Drenovsky, R. E., C. E. Martin, M. R. Falasco & J. J. James, 2008. Variation in resource acquisition and utilization traits between native and invasive perennial forbs. American Journal of Botany 95: 681–687.

    Article  PubMed  Google Scholar 

  • Drenovsky, R. E., B. J. Grewell, C. M. D’Antonio, J. L. Funk, J. J. James, N. Molinari, I. M. Parker & C. L. Richards, 2012a. A functional trait perspective on plant invasion. Annals of Botany 110: 141–153.

    Article  PubMed  PubMed Central  Google Scholar 

  • Drenovsky, R. E., A. Khasanova & J. J. James, 2012b. Trait convergence and plasticity among native and invasive species in resource-poor environments. American Journal of Botany 99: 629–639.

    Article  PubMed  Google Scholar 

  • Eissenstat, D. M., 1992. Costs and benefits of constructing roots of small diameter. Journal of Plant Nutrition 15: 763–782.

    Article  Google Scholar 

  • Erskine-Ogden, J., E. Grotkopp & M. Rejmánek, 2016. Mediterranean, invasive, woody species grow larger than their less-invasive counterparts under potential global environmental change. American Journal of Botany 103: 613–624.

    Article  PubMed  Google Scholar 

  • Fan, S. F., C. H. Liu, D. Yu & D. Xie, 2013. Differences in leaf nitrogen content, photosynthesis, and resource-use efficiency between Eichhornia crassipes and a native plant Monochoria vaginalis in response to altered sediment nutrient levels. Hydrobiologia 711: 129–137.

    Article  CAS  Google Scholar 

  • Feng, Y. L., G. L. Fu & Y. L. Zheng, 2008. Specific leaf area relates to the differences in leaf construction cost, photosynthesis, nitrogen allocation, and use efficiencies between invasive and noninvasive alien congeners. Planta 228: 383–390.

    Article  CAS  PubMed  Google Scholar 

  • Funk, J. L. & P. M. Vitousek, 2007. Resource-use efficiency and plant invasion in low-resource systems. Nature 446: 1079–1081.

    Article  CAS  PubMed  Google Scholar 

  • Gettys, L. A. & R. K. Dumroese, 2009. Optimum storage and germination conditions for seeds of pickerelweed (Pontederia cordata L.) from Florida. Native Plants Journal 10: 4–12.

    Article  Google Scholar 

  • Ghalambor, C. K., J. K. McKay, S. P. Carroll & D. N. Reznick, 2007. Adaptive versus non-adaptive phenotypic plasticity and the potential for contemporary adaptation in new environments. Functional Ecology 21: 394–407.

    Article  Google Scholar 

  • Grotkopp, E., M. Rejmánek & R. Tl, 2002. Toward a causal explanation of plant invasiveness: seedling growth and life-history strategies of 29 pine (Pinus) species. American Naturalist 159: 396–419.

    PubMed  Google Scholar 

  • Gu, D. G., H. Xu, Y. He, F. Zhao & M. S. Huang, 2015. Remediation of urban river water by Pontederia cordata combined with artificial aeration: organic matter and nutrients removal and root-adhered bacterial communities. International Journal of Phytoremediation 17: 1105–1114.

    Article  CAS  PubMed  Google Scholar 

  • Hulme, P. E., 2008. Phenotypic plasticity and plant invasions: is it all Jack? Functional Ecology 22: 3–7.

    Article  Google Scholar 

  • James, J. J., J. M. Mangold, R. L. Sheley & T. Svejcar, 2009. Root plasticity of native and invasive Great Basin species in response to soil nitrogen heterogeneity. Plant Ecology 202: 211–220.

    Article  Google Scholar 

  • Kembel, S. W. & J. F. Cahill Jr., 2005. Plant phenotypic plasticity belowground: a phylogenetic perspective on root foraging trade-offs. American Naturalist 166: 216–230.

    Article  PubMed  Google Scholar 

  • Keser, L. H., W. Dawson, Y. B. Song, F. H. Yu, M. Fischer, M. Dong & M. van Kleunen, 2014. Invasive clonal plant species have a greater root-foraging plasticity than non-invasive ones. Oecologia 174: 1055–1064.

    Article  PubMed  Google Scholar 

  • Lambers, H. & H. Poorter, 1992. Inherent variation in growth rate between higher plants: a search for physiological causes and ecological consequences. Advances in Ecological Research 23: 187–261.

    Article  CAS  Google Scholar 

  • Leishman, M. R., T. Haslehurst, A. Ares & Z. Baruch, 2007. Leaf trait relationships of native and invasive plants: community- and global-scale comparisons. New Phytologist 176: 635–643.

    Article  CAS  PubMed  Google Scholar 

  • Li, Z. Q., L. Y. Kong, L. F. Yang, M. Zhang, T. Cao, J. Xu, Z. X. Wang & Y. Lei, 2012. Effect of substrate grain size on the growth and morphology of the submersed macrophyte Vallisneria natans L. Limnologica 42: 81–85.

    Article  Google Scholar 

  • López-Bucio, J., A. Cruz-Ramírez & L. Herrera-Estrella, 2003. The role of nutrient availability in regulating root architecture. Current Opinion in Plant Biology 6: 280–287.

    Article  PubMed  Google Scholar 

  • Lu, J. B., J. G. Wu, Z. H. Fu & L. Zhu, 2007. Water hyacinth in China: a sustainability science-based management framework. Environmental Management 40: 823–830.

    Article  PubMed  Google Scholar 

  • Madsen, J. D., K. T. Luu & K. D. Getsinger, 1993. Allocation of biomass and carbohydrates in waterhyacinth (Eichhornia crassipes): pond-scale verification. Technical Report A-93-3. US Army Corps of Engineers Waterways Experiment Station Vicksburg, MS.

  • Matzek, V., 2012. Trait values, not trait plasticity, best explain invasive species’ performance in a changing environment. PLoS ONE 7: e48821.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McDowell, S. C. L., 2002. Photosynthetic characteristics of invasive and noninvasive species of Rubus (Rosaceae). American Journal of Botany 89: 1431–1438.

    Article  PubMed  Google Scholar 

  • Mitsuhiro, M. & S. Hidejiro, 2002. Morphological observation on development of juvenile seedlings of Monochoria vaginalis establishing on a flooded paddy soil surface. Weed Biology and Management 2: 148–152.

    Article  Google Scholar 

  • Njambuya, J. & L. Triest, 2010. Comparative performance of invasive alien Eichhornia crassipes and native Ludwigia stolonifera under non-limiting nutrient conditions in Lake Naivasha, Kenya. Hydrobiologia 656: 221–231.

    Article  Google Scholar 

  • Parker, J. D. & M. E. Hay, 2005. Biotic resistance to plant invasions? Native herbivores prefer non-native plants. Ecology Letters 8: 959–996.

    Article  Google Scholar 

  • Peñuelas, J., J. Sardans, J. Llusià, S. M. Owen, J. Carnicer, T. W. Giambelluca, E. L. Rezende, M. Waite & Ü. Niinemets, 2010. Faster returns on ‘leaf economics’ and different biogeochemical niche in invasive compared with native plant species. Global Change Biology 16: 2171–2185.

    Article  Google Scholar 

  • Pigliucci, M., 2001. Phenotypic Plasticity: Beyond Nature and Nurture. The Johns Hopkins University Press, Baltimore.

    Google Scholar 

  • Pyšek, P. & D. M. Richardson, 2007. Chapter 7: traits associated with invasiveness in alien plants: where do we stand? In Nentwig, W. (ed.), Biological Invasions. Springer, Berlin: 97–125.

    Google Scholar 

  • Richards, C. L., O. Bossdorf, N. Z. Muth, J. Gurevitch & M. Pigliucci, 2006. Jack of all trades, master of some? On the role of phenotypic plasticity in plant invasions. Ecology Letters 9: 981–993.

    Article  PubMed  Google Scholar 

  • Shi, R. H., 1994. Agricultural and Chemical Analysis for Soil. Chinese Agriculture Press, Beijing. (in Chinese).

    Google Scholar 

  • Valladares, F., D. Sanchez-Gomez & M. A. Zavala, 2006. Quantitative estimation of phenotypic plasticity: bridging the gap between the evolutionary concept and its ecological applications. Journal of Ecology 94: 1103–1116.

    Article  Google Scholar 

  • van Kleunen, M., E. Weber & M. Fischer, 2010. A meta-analysis of trait differences between invasive and non-invasive plant species. Ecology Letters 13: 235–245.

    Article  PubMed  Google Scholar 

  • Villamagna, A. M. & B. R. Murphy, 2010. Ecological and socio-economic impacts of invasive water hyacinth (Eichhornia crassipes): a review. Freshwater Biology 55: 282–298.

    Article  Google Scholar 

  • Xie, Y. H. & D. Yu, 2003. The significance of lateral roots in phosphorus (P) acquisition of water hyacinth (Eichhornia crassipes). Aquatic Botany 75: 311–321.

    Article  Google Scholar 

  • Xiong, W., D. Yu, Q. Wang, C. H. Liu & L. G. Wang, 2008. A snail prefers native over exotic freshwater plants: implications for the enemy release hypotheses. Freshwater Biology 53: 2256–2263.

    Google Scholar 

  • Yang, C. H. & J. H. Everitt, 2010. Mapping three invasive weeds using airborne hyperspectral imagery. Ecological Informatics 5: 429–439.

    Article  Google Scholar 

  • Zhang, Y. Y., D. Y. Zhang & S. C. H. Barrett, 2010. Genetic uniformity characterizes the invasive spread of water hyacinth (Eichhornia crassipes), a clonal aquatic plant. Molecular Ecology 19: 1774–1786.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge funding support from the Natural Science Foundation of China (31170339) and the Special Foundation of National Science and Technology Basic Research (2013FY112300). We thank Ligong Wang, Xiaolong Huang, Xin Guan, Jing Li, Gendi Xing, and Xi Li for their assistance in harvest and measurement. We also appreciate the valuable suggestions from Prof. Rebecca E Drenovsky.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunhua Liu.

Additional information

Handling editor: Katya E. Kovalenko

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, T., Hu, J., Liu, C. et al. Soil type can determine invasion success of Eichhornia crassipes . Hydrobiologia 788, 281–291 (2017). https://doi.org/10.1007/s10750-016-3003-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-016-3003-4

Keywords

Navigation