Skip to main content

Advertisement

Log in

Drivers shaping phytoplankton diversity and composition in a humid Pampean floodplain lake (Natural Reserve)

  • ARGENTINE PAMPEAN SHALLOW LAKES
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

We aimed to identify the driver/s of phytoplankton diversity (gamma, beta, alpha) and community composition in a Pampean floodplain wetland (Otamendi), using species and functional groups. We performed a seasonal regional survey (2004–2006, phytoplankton regime) across the different aquatic systems in the wetland. Gamma diversity was 254 species. Beta diversity was 2.53 in late spring, 2.49 in winter, and was lowest in summer (2.05) when the wetland was over flooded. Alpha diversity (mean richness) ranged between 29 and 50 species. Multiple regressions showed that phytoplankton alpha diversity (richness, Shannon–Wiener, evenness, and Simpson diversity index) responded to dissolved inorganic nitrogen, suspended solids, light attenuation, and pH. Nutrients also explained well the distribution of phytoplankton functional groups. Dissolved inorganic nitrogen concentrations were usually limiting in the shallow lakes, whereas phosphate concentration was always high. Light attenuation was mostly caused by high suspended solids and high humic substances. We also re-analyzed data from a survey performed during a free-floating plant regime (1998–2000); the dense macrophyte cover attenuates most incoming light into the water column. Compared with the phytoplankton regime, the free-floating plant regime had markedly lower chlorophyll, lower alpha, higher beta (high heterogeneity among habitats with and without macrophytes), and similar gamma diversity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abdel-Tawwab, M., 2006. Effect of free-floating macrophyte, Azolla pinnata, on water physico-chemistry, primary productivity, and the production of Nile Tilapia, Oreochromis niloticus (L.), and common carp, Cyprinus carpio L., in fertilized earthen ponds. Journal of Applied Aquaculture 18: 21–41.

    Article  Google Scholar 

  • Abonyi, A., M. Leitão, A. M. Lançon & J. Padisák, 2012. Phytoplankton functional groups as indicators of human impacts along the River Loire (France). Hydrobiologia. doi:10.1007/s10750-012-1130-0.

    Google Scholar 

  • APHA, 2005. Standard Methods for the Examination of Water and Wastewaters, 21st edn. American Public Health Association APHA, AWWA, WEF, Washington, DC: 1368 pp.

  • Atlas Ambiental de Buenos Aires, 2010. [http://atlasdebuenosaires.gov.ar].

  • Borges, P. A. F. & S. Train, 2009. Phytoplankton diversity in the Upper Paraná River floodplain during two years of drought (2000 and 2001). Brazilian Journal of Biology 69: 637–647.

    Article  CAS  Google Scholar 

  • Borics, G., B. Tóthmérész, B. A. Lukács & G. Várbíró, 2012. Functional groups of phytoplankton shaping diversity of shallow lake ecosystems. Hydrobiologia 698: 251–262.

    Article  Google Scholar 

  • Chaparro, G., M. S. Fontanarrosa, M. R. Schiaffino, P. de Tezanos Pinto & I. O’Farrell, 2014. Seasonal-dependence of the responses of biological communities to flood pulses in warm temperate floodplain lakes: implications for the “alternative stable states” model. Aquatic Sciences. doi:10.1007/s00027-014-0356-5.

    Google Scholar 

  • Chichizola, S. E., 1993. Las comunidades vegetales de la Reserva Natural Estricta de Otamendi y sus relaciones con el ambiente. Parodiana 8: 227–263.

    Google Scholar 

  • de Melo, S. & V. L. M. Huszar, 2000. Phytoplankton in an Amazonian flood-plain lake (Lago Batata, Brasil): diel variation and species strategies. Journal of Plankton Research 22: 63–76.

    Article  Google Scholar 

  • de Tezanos, Pinto P & I. O’Farrell, 2014. Regime shifts between free-floating plants and phytoplankton: a review. Hydrobiologia. doi:10.1007/s10750-014-1943-0.

    Google Scholar 

  • de Tezanos Pinto, P., L. Allende & I. O’Farrell, 2007. Influence of free-floating plants on the structure of a natural phytoplankton assemblage: an experimental approach. Journal of Plankton Research 29: 47–56.

    Article  Google Scholar 

  • Devercelli, M., 2006. Phytoplankton of the middle Paraná River during an anomalous hydrological period: a morphological and functional approach. Hydrobiologia 563: 465–478.

    Article  Google Scholar 

  • Devercelli M., Y. Zalocar de Domitrovic, M. E. Forastier & N. Meichtry de Zaburlín, 2014. Phytoplankton of the Paraná River Basin. Advances in Limnology 65: 39–65.

  • García de Emiliani, M. O., 1997. Effects of wáter level fluctuations on phytoplankton in a river-floodplain lake system (Paraná River, Argentina). Hydrobiologia 357: 1–15.

    Article  Google Scholar 

  • Gómez, S. E. & N. I. Toresani, 1998. Pampas, pp. 97–114. In Canevari, P., D. E. Blanco, E. Bucher, G. Castro & I. Davidson (eds), Los humedales de la Argentina: Clasificación, situación actual, conservación y legislación, Vol 46. Wetlands International Publication, Buenos Aires: 208 pp.

  • Hillebrand, H., C.-D. Durselen, D. Kirshtel, U. Pollingher & T. Zohary, 1999. Biovolume calculation for pelagic and benthic microalgae. Journal of Phycology 35: 403–424.

    Article  Google Scholar 

  • Huszar, V. & C. Reynolds, 1997. Phytoplankton periodicity and sequences of dominance in an Amazonian flood-plain lake (Lago Batata, Pará, Brazil): responses to gradual environmental change. Hydrobiologia 346: 169–181.

    Article  Google Scholar 

  • Huszar, V., C. Kruk & N. Caraco, 2003. Steady-state assemblages of phytoplankton in four temperate lakes (NE USA). Hydrobiologia 502: 97–109.

    Article  Google Scholar 

  • Izaguirre, I., R. Sinistro, I. O’Farrell, F. Unrein & G. Tell, 2001. Algal assemblages in anoxic relictual oxbow lakes from the Lower Paraná floodplain (Argentina). Nova Hedwigia 123: 95–106.

    Google Scholar 

  • Izaguirre, I., I. O’Farrell, F. Unrein, R. Sinistro, M. dos Santos Afonso & G. Tell, 2004. Algal assemblages across a wetland, from a shallow lake to relictual oxbow lakes (Lower Paraná River, South America). Hydrobiologia 511: 25–36.

    Article  CAS  Google Scholar 

  • Izaguirre, I., L. Allende, R. Escaray, J. Bustingorry, G. Pérez & G. Tell, 2012. Comparison of morpho-functional phytoplankton classifications in human-impacted shallow lakes with different stable states. Hydrobiologia 698: 203–216.

    Article  CAS  Google Scholar 

  • Juliarena de Moretti C. E., 1982. La vida silvestre en el área de Otamendi. Serie Cuadernos de Ecología I. Facultad de Filosofia y letras. Instituto de Geografía “Romualdo Ardissone”.

  • Jun, S. & L. Dongyan, 2003. Geometric models for calculating cell biovolume and surface area for phytoplankton. Journal of Plankton Research 25: 1331–1346.

    Article  Google Scholar 

  • Junk, W. J., P. B. Bayley & R. Esparks, 1989. The flood pulse concept in river floodplain systems. In Podge, J. P. (ed.), Proceedings of the International Large River Sympsoium. Canadians Special Publication of Fisheries and Aquatic Sciences, Ohawa: 110–127.

    Google Scholar 

  • Kirk, J. T. O., 1994. Light and Photosynthesis in Aquatic Ecosystems. Cambridge University Press, Melbourne.

    Book  Google Scholar 

  • Leps J. & P. Smilauer, 2003. Multivariate Analysis of Ecological Data Using CANOCO. Cambridge University Press, New York: 269 pp.

  • Mackereth, F. J. H., J. Heron & J. F. Talling, 1978. Water analysis: some revised methods for limnologists. Scientific Publications of the Freshwater Biological Association 36: 1–120.

    Google Scholar 

  • Magurran, A. E., 2008. Measuring Biological Diversity. Blackwell Science, Malden.

    Google Scholar 

  • Marker, A. F. H., A. Nusch, H. Rai & B. Riemann, 1980. The measurement of photosynthetic pigments in freshwater and standardization of methods: conclusions and recommendations. Archiv fur Hydrobiologie Beihandlung Ergebnisse der Limnologie 14: 91–106.

    CAS  Google Scholar 

  • Meerhoff M., 2006. The structuring role of macrophytes on trophic dynamics in shallow lakes under a climate warming scenario. PhD Thesis.

  • Naselli-Flores, L. & R. Barone, 2000. Phytoplankton dynamics and structure: a comparative analysis in natural and man-made water bodies of different trophic state. Hydrobiologia 438: 65–74.

    Article  CAS  Google Scholar 

  • OECD, 1982. Eutrophication of Waters, Monitoring, Assessment and Control. Organisation for Economic Cooperation and Development, Paris.

    Google Scholar 

  • O’Farrell, I., R. Sinistro, I. Izaguirre & F. Unrein, 2003. Do steady state assemblages occur in shallow lentic environments from wetlands? Hydrobiologia 502: 197–209.

    Article  Google Scholar 

  • O’Farrell, I., P. de Tezanos Pinto, P. Rodríguez, G. Chaparro & H. Pizarro, 2009. Experimental evidence of the dynamic effect of free-floating plants on phytoplankton ecology. Freshwater Biology 54: 363–375.

    Article  Google Scholar 

  • O’Farrell, I., I. Izaguirre, G. Chaparro, F. Unrein, R. Sinistro, H. Pizarro, P. L. Rodríguez, P. de Tezanos Pinto, R. Lombardo & G. Tell, 2011. Water level variation as the main driver of the alternation between a free-floating plant and a phytoplankton dominated state: a long term study in a floodplain lake. Aquatic Science 73: 275–287.

    Article  Google Scholar 

  • Padisák, J., L. Crossetti & L. Naselli-Flores, 2009. Use and misuse in the application of the phytoplankton functional classification: a critical review with updates. Hydrobiologia 621: 1–19.

    Article  Google Scholar 

  • Paidere, J., D. Gruberts, A. Škute & I. Druvietis, 2007. Impact of two different flood pulses on planktonic communities of the largest floodplain lakes of the Daugava River (Latvia). Hydrobiologia 592: 303–314.

    Article  Google Scholar 

  • Pálffy, K., M. Présing & L. Vörös, 2013. Diversity patterns of trait-based phytoplankton functional groups in two basins of a large, shallow lake (Lake Balaton, Hungary) with different trophic state. Aquatic Ecology 47: 195–210.

    Article  Google Scholar 

  • Pasztaleniec, A. & M. Poniewozik, 2013. The impact of free-floating plant cover on phytoplankton assemblages of oxbow lakes (The Bug River Valley, Poland). Biologia 68: 18–29.

    Article  Google Scholar 

  • Revenga C. & G. Mock, 2000. Freshwater biodiversity in crisis. In Earth Trends. World Resources Institute, Washington, DC.

  • Reynolds, C. S., 2006. Ecology of Phytoplankton. Cambridge University Press, Cambridge.

    Book  Google Scholar 

  • Reynolds, C. S., V. Huszar, C. Kruk, L. Naselli-Flores & S. Melo, 2002. Towards a functional classification of the freshwater phytoplankton. Journal of Plankton Research 24: 417–428.

    Article  Google Scholar 

  • Rodrigues Ibañez, M. do S., 1998. Phytoplankton composition and abundance of a central Amazonian floodplain lake. Hydrobiologia 362: 79–83.

  • Rodríguez, P. & H. Pizarro, 2007. Phytoplankton productivity in a highly colored shallow lake of a South American floodplain. Wetlands 27: 1152–1159.

    Google Scholar 

  • Sarmento, H., M. Isumbisho & J. P. Descy, 2006. Phytoplankton ecology of Lake Kivu (Eastern Africa). Journal of Plankton Research 28: 815–829.

    Article  CAS  Google Scholar 

  • Scheffer, M., 2009. Critical Transitions in Nature and Society. Princeton University Press, Princeton.

    Google Scholar 

  • Schwaderer, A., K. Yoshiyama, P. de Tezanos Pinto, N. G. Swenson, C. A. Klausmeier & E. Litchman, 2011. Eco-evolutionary differences in light utilization traits and distributions of freshwater phytoplankton. Limnology and Oceanography 56: 589–598.

    Article  Google Scholar 

  • Simberloff, D. & T. Dayan, 1991. The guild concept and the structure of ecological communities. Annual Review of Ecology and Systematics 22: 115–143.

    Article  Google Scholar 

  • Sokal, R. R. & F. J. Rohlf, 1995. Biometry: The principles and Practice of Statistics in Biological Research, 3rd edn. W. H. Freeman, San Francisco.

  • ter Braak, C. J. F. & P. Smilauer, 2002. CANOCO Reference Manual and CanoDraw for Windows User´s Guide: Software for Canonical Community Ordination (version 4.5). Microcomputer Power, New York.

  • Thomaz, S. M., L. M. Bini & R. L. Bozelli, 2007. Floods increase similarity among aquatic habitats in river-floodplain systems. Hydrobiologia 579: 1–13.

    Article  Google Scholar 

  • Unrein F. 2001. Efecto de los nutrientes y el pH sobre el crecimiento y la estructura del fitoplancton en ambientes de la llanura alluvial del Paraná inferior. PhD Thesis. Universidad de Buenos Aires, Buenos Aires.

  • Utermöhl, M., 1958. Zur Vervollkommung der quantitativen Phytoplankton Methodik, MIH. Verhandlungen des Internationalen Verein Limnologie 9: 1–38.

    Google Scholar 

  • Vyverman, W., 1996. Phytoplankton diversity and abundance along environmental gradients in tropical floodplain lakes (Sepik-Ramu floodplain, Papua New Guinea). In Perspectives in Tropical Limnology. SPB Academic Publishing, Amsterdam: 277–294.

  • Whittaker, R. H., 1960. Vegetation of the Siskiyou Mountains, Oregon and California. Ecological Monographs 30: 279–338.

    Article  Google Scholar 

  • Williamson, C. E., D. P. Morris & M. L. Pace, 1999. Dissolved organic carbon and nutrients as regulators of lake ecosystems: resurrection of a more integrated paradigm. Limnology and Oceanography 44: 795–803.

    Article  CAS  Google Scholar 

  • Wilson, M. V. & C. L. Mohler, 1983. Measuring compositional change along gradients. Vegetatio 54: 129–141.

    Article  Google Scholar 

  • Zalocar de Domitrovic, Y., 1990. Efecto de las fluctuaciones del nivel hidrométrico sobre el fitoplancton en tres lagunas isleñas en el area de la confluencia de los ríos Paraná y Paraguay. Ecosur 16: 13–29.

    Google Scholar 

  • Zar, J. H., 2010. Biostatistical Analysis, 5th ed. Pearson Prentice Hall, Upper Saddle River.

    Google Scholar 

Download references

Acknowledgments

Financial support for this project was provided by UBACYT X195 and PICT 01-12332 ANCYPT. We are grateful to the Otamendi Natural Reserve (Parques Nacionales) staff for their collaboration and to Dr. Jarad Mellard for linguistic assistance. We would like to thank the Managing and Subject Editor, and reviewers for their comments; they have improved our manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paula de Tezanos Pinto.

Additional information

Guest editors: I. Izaguirre, L. A. Miranda, G. M. E. Perillo, M. C. Piccolo & H. E. Zagarese / Shallow Lakes from the Central Plains of Argentina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Tezanos Pinto, P., Lombardo, R., O’Farrell, I. et al. Drivers shaping phytoplankton diversity and composition in a humid Pampean floodplain lake (Natural Reserve). Hydrobiologia 752, 77–89 (2015). https://doi.org/10.1007/s10750-014-2008-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-014-2008-0

Keywords

Navigation