Skip to main content
Log in

Functional groups of phytoplankton shaping diversity of shallow lake ecosystems

  • PHYTOPLANKTON
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Phytoplankton of eutrophic shallow lakes are frequently dominated by one species or species of the same functional group, resulting in species-pure algal assemblages. Knowledge of the structure of these assemblages is essential to understand their functioning; therefore, species and functional diversity were investigated in five sub-types of eutrophic shallow lake. Among the sub-types, astatic saline lakes and hypertrophic ponds had type-specific assemblages dominated by SN and W0, W1 codons. The diversity of the phytoplankton in the sub-types was quite similar, except for the astatic saline lakes, which were characterised by lower values of both functional and species diversity. We found that both functional and species diversity were low when bloom-forming cyanobacteria (H1, SN functional groups) became dominant. Dominance of other groups (J, Y, LO and W1) did not coincide with decrease in species diversity. Analysis of the biovolume versus diversity relationships revealed that decrease in diversity might be expected at biovolume >20 mm3 l−1 for shallow lakes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abrams, P. A., 1995. Monotonic or unimodal diversity-productivity gradients: what does competition theory predict? Ecology 76: 2019–2027.

    Article  Google Scholar 

  • Borics, G., I. Grigorszky, S. Szabó & J. Padisák, 2000. Phytoplankton associations under changing pattern of bottom-up vs. top-down control in a small hypertrophic fishpond in East Hungary. Hydrobiologia 424: 79–90.

    Article  Google Scholar 

  • Borics, G., B. Tóthmérész, I. Grigorszky, J. Padisák, G. Várbíró & S. Szabó, 2003. Algal assemblage types of boglakes in Hungary and their relation to water chemistry, hydrological conditions and habitat diversity. Hydrobiologia 502: 145–155.

    Article  CAS  Google Scholar 

  • Borics, G., G. Várbíró, I. Grigorszky, E. Krasznai, S. Szabó & K. T. Kiss, 2007. A new evaluation technique of potamo-plankton for the assessment of the ecological status of rivers. Archiv für Hydrobiologie 161(3–4): 465–486 (Large Rivers Vol. 17, no. 3–4).

    Google Scholar 

  • Borics, G., I. Grigorszky, G. Várbíró & E. Krasznai, 2009. Javaslat a felszíni vizek fitoplankton alapján történő minősítésére. ÖKO Zrt: „Vízgyűjtő-gazdálkodási tervek készítése” című KEOP-2.5.0.A. projekt zárójelentése. Proposal for the phytoplankton-based quality assessment of surface waters. In ÖKO Zrt: Preparation of Water Management Plans. Final report of the KEOP 2.5.0.A. project. In Hungarian.

  • Borics, G., A. Abonyi, E. Krasznai, G. Várbíró, I. Grigorszky, S. Szabó, Cs. Deák & B. Tóthmérész, 2011. Small-scale patchiness of the phytoplankton in a lentic oxbow. Journal of Plankton Research 33: 973–981.

    Article  Google Scholar 

  • Caljon, A. G., 1987. Phytoplankton of a recently landlocked brackish-water lagoon of Lake Tanganyika: a systematic account. Hydrobiologia 153: 31–54.

    Article  Google Scholar 

  • Cleveland, W. S., 1979. Robust locally weighted regression and smoothing scatterplots. Journal of the American Statistical Association 74: 829–836.

    Article  Google Scholar 

  • Declerck, S., M. Vanderstukken, A. Pals, K. Muylaert & L. De Meester, 2007. Plankton biodiversity along a gradient of productivity and its mediation by macrophytes. Ecology 88: 2199–2210.

    Article  PubMed  CAS  Google Scholar 

  • Dodson, S. I., S. E. Arnott & C. L. Cottingham, 2000. The relationship in lake communities between primary productivity and species richness. Ecology 81: 2662–2679.

    Article  Google Scholar 

  • Drenner, R. W. & K. D. Hambright, 2002. Piscivores and trophic cascades. The Scientific World Journal 2: 284–307.

    Article  CAS  Google Scholar 

  • Felföldi, T., B. Somogyi, K. Márialigeti & L. Vörös, 2009. Characterization of photoautotrophic picoplankton assemblages in turbid, alkaline lakes of the Carpathian Basin (Central Europe). Journal of Limnology 68: 385–395.

    Article  Google Scholar 

  • Grime, J. P., 1973. Competitive exclusion in herbaceous vegetation. Nature 242: 7–347.

    Article  Google Scholar 

  • Gross, K. & B. J. Cardinale, 2007. Does species richness drive community production or vice versa? Reconciling historical and contemporary paradigms in competitive communities. American Naturalist 170: 207–220.

    Article  PubMed  Google Scholar 

  • Hadar, L., I. Noy-Meir & A. Perevolotsky, 1999. The effect of shrub clearing and grazing on the composition of a Mediterranean plant community: functional groups versus species. Journal of Vegetation Science 10: 673–682.

    Article  Google Scholar 

  • Hardin, G., 1960. The competitive exclusion principle. Science 131: 1292–1297.

    Article  PubMed  CAS  Google Scholar 

  • Harris, G. P., 1986. Phytoplankton Ecology. Structure, Function and Fluctuation. Chapman and Hall, New York.

    Book  Google Scholar 

  • Hasler, A. D. & E. Jones, 1949. Demonstration of the antagonistic action of large aquatic plants on algae and rotifers. Ecology 30: 346–359.

    Article  Google Scholar 

  • Hillebrand, H., C. D. Dürselen, D. Kirschtel, U. Pollingher & T. Zohary, 1999. Biovolume calculation for pelagic and benthic microalgae. Journal of Phycology 35: 403–424.

    Article  Google Scholar 

  • Hooper, D. U. & P. M. Vitousek, 1997. The effects of plant composition and diversity on ecosystem processes. Science 277: 1302–1305.

    Article  CAS  Google Scholar 

  • Huston, M. A., 1997. Hidden treatments in ecological experiments: re-evaluating the ecosystem function of biodiversity. Oecologia 110: 449–460.

    Article  Google Scholar 

  • Jasser, I., 1995. The influence of macrophytes on a phytoplankton community in experimental conditions. Hydrobiologia 306: 21–32.

    Article  CAS  Google Scholar 

  • Jeppesen, E., J. P. Jensen, M. Søndergaard, T. Lauridsen, L. J. Pedersen & L. Jensen, 1997. Top-down control in freshwater lakes: the role of nutrient state, submerged macrophytes and water-depth. Hydrobiologia 342: 151–164.

    Article  Google Scholar 

  • Jeppesen, E., J. Peder Jensen, M. Søndergaard, T. Lauridsen & F. Landkildehus, 2000. Trophic structure, species richness and biodiversity in Danish lakes: changes along a phosphorus gradient. Freshwater Biology 45: 201–218.

    Article  CAS  Google Scholar 

  • Jones, R. C., M. S. Adams & K. Walti, 1983. Phytoplankton as a factor in the decline of the submersed macrophyte Myriophyllum spicatum L. in Lake Wingra, Wisconsin, U.S.A. Hydrobiologia 107: 213–219.

    Article  Google Scholar 

  • Körner, S. & A. Nicklisch, 2002. Allelopathic growth inhibition of selected phytoplankton species by submerged macrophytes. Journal of Phycology 38: 862–871.

    Article  Google Scholar 

  • Krasznai, E., G. Borics, G. Várbíró, A. Abonyi, J. Padisák, Cs. Deák & B. Tóthmérész, 2010. Characteristics of the pelagic phytoplankton in shallow oxbows. Hydrobiologia 639: 261–269.

    Article  Google Scholar 

  • Leibold, M. A., 1999. Biodiversity and nutrient enrichment in pond plankton communities. Evolutionary Ecology Research 1: 73–95.

    Google Scholar 

  • Margalef, R., 1980. Perspectives in Ecological Theory. University Chicago Press, Chicago, IL.

    Google Scholar 

  • Mischke, U., B. Nixdorf, E. Hoehn & U. Riedmüller, 2002. Möglichkeiten zur Bewertung von Seen anhand des Phytoplanktons – Aktueller Stand in Deutschland. Aktuelle Reihe 5/02: 25–37, BTU Cottbus.

    Google Scholar 

  • Moore, D., M. O’Donohue, C. Garnett, C. Critchley & G. Shaw, 2005. Factors affecting akinete differentiation in Cylindrospermopsis raciborskii (Nostocales, Cyanobacteria). Freshwater Biology 50: 345–352.

    Article  Google Scholar 

  • Moss, B., 1973. Diversity in fresh-water phytoplankton. American Midland Naturalist 90: 341–355.

    Article  Google Scholar 

  • Naselli-Flores, L., J. Padisák, M. T. Dokulil & I. Chorus, 2003. Equilibrium/steady-state concept in phytoplankton ecology. Hydrobiologia 502: 395–403.

    Article  Google Scholar 

  • Padisák, P. & C. S. Reynolds, 1998. Selection of phytoplankton associations in Lake Balaton, Hungary, in response to eutrophication and restoration measures, with special reference to the cyanoprokaryotes. Hydrobiologia 384: 41–53.

    Article  Google Scholar 

  • Padisák, J., G. Borics, G. Fehér, I. Grigorszky, I. Oldal, A. Schmidt & Z. Zámbóné-Doma, 2003. Dominant species, functional assemblages and frequency of equilibrium phases in late summer phytoplankton assemblages in Hungarian small shallow lakes. Hydrobiologia 502: 157–168.

    Article  Google Scholar 

  • Padisák, J., I. Grigorszky, G. Borics & É. Soróczki-Pintér, 2006. Use of phytoplankton assemblages for monitoring ecological status of lakes within the Water Framework Directive: the assemblage index. Hydrobiologia 553: 1–14.

    Article  Google Scholar 

  • Padisák, J., L. O. Crossetti & L. Naselli-Flores, 2009. Use and misuse in the application of the phytoplankton functional classification: a critical review with updates. Hydrobiologia 621: 1–19.

    Article  Google Scholar 

  • Petchey, O. L. & K. J. Gaston, 2006. Functional diversity: back to basics and looking forward. Ecology Letters 9: 741–758.

    Article  PubMed  Google Scholar 

  • Reynolds, C. S., 1980. Phytoplankton assemblages and their periodicity in stratifying lake systems. Holarctic Ecology 3: 141–159.

    Google Scholar 

  • Reynolds, C. S., 1998. What factors influence the species composition of phytoplankton in lakes of different trophic status? Hydrobiologia 369/370: 11–26.

    Article  CAS  Google Scholar 

  • Reynolds, C. S., 2006. Ecology of Phytoplankton. Cambridge University Press, Cambridge: 535.

    Book  Google Scholar 

  • Reynolds, C. S., V. Huszar, C. Kruk, L. Naselli-Flores & S. Melo, 2002. Towards a functional classification of the freshwater phytoplankton. Journal of Plankton Research 24: 417–428.

    Article  Google Scholar 

  • Richman, S. & S. I. Dodson, 1983. The effect of food quality on feeding and respiration by Daphnia and Diaptomus. Limnology and Oceanography 28: 948–956.

    Article  Google Scholar 

  • Rojo, C. & M. Álvarez-Cobelas, 2003. Are there steady state phytoplankton assemblages in the field? Hydrobiologia 502: 3–12.

    Article  Google Scholar 

  • Romo, S. & M. J. Villena, 2005. Phytoplankton strategies and diversity under different nutrient levels and planktivorous fish densities in a shallow mediterranean lake. Journal of Plankton Research 27: 1273–1286.

    Article  CAS  Google Scholar 

  • Salmaso, N. & J. Padisák, 2007. Morpho-Functional Groups and phytoplankton development in two deep lakes (Lake Garda, Italy and Lake Stechlin, Germany). Hydrobiologia 578: 97–112.

    Article  Google Scholar 

  • Scheffer, M., 1998. Ecology of Shallow Lakes. Chapman and Hall, London: 357.

    Google Scholar 

  • Scheffer, M. & S. R. Carpenter, 2003. Catastrophic regime shifts in ecosystems: linking theory to observation. Trends in Ecology & Evolution 18: 648–656.

    Article  Google Scholar 

  • Scheffer, M. & E. H. Van Nes, 2007. Shallow lakes theory revisited: various alternative regimes driven by climate, nutrients, depth and lake size. Hydrobiologia 584: 455–466.

    Article  CAS  Google Scholar 

  • Scheffer, M., S. H. Hosper, M. L. Meijer & B. Moss, 1993. Alternative equilibria in shallow lakes. Trends in Ecology & Evolution 8: 275–279.

    Article  CAS  Google Scholar 

  • Schriver, P., J. Bogestrand, E. Jeppesen & M. Søndergaard, 1995. Impact of submerged macrophytes on fish-zooplankton-phytoplankton interactions: large-scale enclosure experiments in a shallow eutrophic lake. Freshwater Biology 33: 255–270.

    Article  Google Scholar 

  • Shannon, C. E., 1948. A mathematical theory of communication. The Bell System Technical Journal 27: 379–423.

    Google Scholar 

  • Sommer, U., J. Padisák, C. S. Reynolds & P. Juhász-Nagy, 1993. Hutchinson’s heritage: the diversity-disturbance relationship in phytoplankton. Hydrobiologia 249: 1–7.

    Article  Google Scholar 

  • Søndergaard, M. & B. Moss, 1998. Impact of submerged macrophytes on phytoplankton in shallow freshwater lakes. In Jeppesen, E., M. Søndergaard & K. Christoffersen (eds), The Structuring Role of Submerged Macrophytes in Lakes. Ecological Studies 131. Springer, New York: 115–132.

    Chapter  Google Scholar 

  • Szilágyi, F., É. Ács, G. Borics, B. Halasi-Kovács, P. Juhász, B. Kiss, T. Kovács, Z. Müller, G. Lakatos, J. Padisák, P. Pomogyi, C. Stenger-Kovács, K. É. Szabó, E. Szalma & B. Tóthmérész, 2008. Application of Water Framework Directive in Hungary: development of biological classification systems. Water Science and Technology 58: 2117–2125.

    Article  PubMed  Google Scholar 

  • Tilman, D., J. Knops, D. Wedin, P. Reich, M. Ritchie & E. Siemann, 1997. The influence of functional diversity and composition on ecosystem processes. Science 277: 1300–1302.

    Article  CAS  Google Scholar 

  • Utermöhl, H., 1958. Zur Vervollkommnung der quantitative Phytolankton-Methodik. Mitteilung der Internationalen Vereinigung Für Limnologie 9: 1–38.

    Google Scholar 

  • Van den Berg, M. S., H. Coops, M. L. Meijer, M. Scheffer & J. Simons, 1997. Clear water associated with a dense Chara vegetation in the shallow and turbid Lake Veluwemeer, the Netherlands. In Jeppesen, E., Ma. Søndergaard, Mo. Søndergaard & K. Kristoffersen (eds), Structuring Role of Submerged Macrophytes in Lakes. Springer-Verlag, New York: 339–352.

    Google Scholar 

  • Van Donk, E. & W. J. Van de Bund, 2002. Impact of submerged macrophytes including charophytes on phyto- and zooplankton communities: allelopathy versus other mechanisms. Aquatic Botany 72: 261–274.

    Article  Google Scholar 

  • Várbíró, G., É. Ács, G. Borics, K. Érces, G. Fehér, I. Grigorszky, T. Japport, G. Kocsis, E. Krasznai, K. Nagy, L.Z. Nagy, Zs. Piliszky, & K.T. Kiss, 2007. Use of Self Organizing Maps (SOM) for characterization of riverine phytoplankton associations in Hungary. Archiv für Hydrobiologie 161(3–4): 388–394 (Large Rivers Vol. 17, no. 3–4).

  • Wardle, D. A., 1999. Is ‘sampling effect’ a problem for experiments investigating biodiversity-ecosystem function relationships. Oikos 87: 403–407.

    Article  Google Scholar 

  • Weithoff, G., 2003. The concepts of ‘plant functional types’ and ‘functional diversity’ in lake phytoplankton – a new understanding of phytoplankton ecology? Freshwater Biology 48: 1669–1675.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gábor Várbíró.

Additional information

Guest editors: N. Salmaso, L. Naselli-Flores, L. Cerasino, G. Flaim, M. Tolotti & J. Padisák / Phytoplankton responses to human impacts at different scales: 16th workshop of the International Association of Phytoplankton Taxonomy and Ecology (IAP)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Borics, G., Tóthmérész, B., Lukács, B.A. et al. Functional groups of phytoplankton shaping diversity of shallow lake ecosystems. Hydrobiologia 698, 251–262 (2012). https://doi.org/10.1007/s10750-012-1129-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-012-1129-6

Keywords

Navigation