Skip to main content
Log in

Predation on invasive zebra mussel, Dreissena polymorpha, by pumpkinseed sunfish, rusty crayfish, and round goby

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The enemy release hypothesis states that invasive species are successful in their new environment because native species are not adapted to utilize the invasive. If true for predators, native predators should have lower feeding rates on the invasive species than a predator from the native range of the invasive species. We tested this hypothesis for zebra mussel (Dreissena polymorpha) by comparing handling time and predation rate on zebra mussels in the laboratory by two North American species (pumpkinseed, Lepomis gibbosus, and rusty crayfish, Orconectes rusticus) and one predator with a long evolutionary history with zebra mussels (round goby, Neogobius melanostomus). Handling time per mussel (7 mm shell length) ranged from 25 to >70 s for the three predator species. Feeding rates on attached zebra mussels were higher for round goby than the two native predators. Medium and large gobies consumed 50–67 zebra mussels attached to stones in 24 h, whereas pumpkinseed and rusty crayfish consumed <11. This supports the hypothesis that the rapid spread of zebra mussels in North America was facilitated by low predation rates from the existing native predators. At these predation rates and realistic goby abundance estimates, round goby could affect zebra mussel abundance in some lakes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Andraso, G. M., 2005. Summer food habits of pumpkinseeds (Lepomis gibbosus) and bluegills (Lepomis macrochirus) in Presque Isle Bay, Lake Erie. Journal of Great Lakes Research 31: 397–404.

    Article  Google Scholar 

  • Andraso, G. M., M. T. Ganger & J. Adamczyk, 2011a. Size-selective predation by round gobies (Neogobius melanostomus) on dreissenid mussels in the field. Journal of Great Lakes Research 37: 298–304.

    Article  Google Scholar 

  • Andraso, G. M., J. Cowles, R. Colt, J. Patel & M. Campbell, 2011b. Ontogenetic changes in pharyngeal morphology correlate with a diet shift. Journal of Great Lakes Research 37: 738–743.

    Article  Google Scholar 

  • Bartsch, M. R., L. A. Barstch & S. Gutreuter, 2005. Strong effects of predation by fishes on an invasive macroinvertebrate in a large floodplain river. Journal of the North American Benthological Society 24: 168–177.

    Article  Google Scholar 

  • Blossey, B. & R. Notzold, 1995. Evolution of increased competitive ability in invasive nonindigenous plants: a hypothesis. Journal of Ecology 83: 887–889.

    Article  Google Scholar 

  • Boles, L. C. & R. N. Lipcius, 1997. Potential for population regulation of the zebra mussel by finfish and the blue crab in North American estuaries. Journal of Shellfish Research 16: 179–186.

    Google Scholar 

  • Bunnell, D. B., T. B. Johnson & C. T. Knight, 2005. The impact of introduced round gobies (Neogobius melanostomus) on phosphorus cycling in central Lake Erie. Canadian Journal of Fisheries and Aquatic Sciences 62: 15–29.

    Article  CAS  Google Scholar 

  • Carlsson, N. O. L. & D. L. Strayer, 2009. Intraspecific variation in the consumption of exotic prey – a mechanism that increases biotic resistance against invasive species? Freshwater Biology 54: 2315–2319.

    Article  Google Scholar 

  • Carlsson, N. O. L., H. Bustamante, D. L. Strayer & M. L. Pace, 2011. Biotic resistance on the increase: native predators structure invasive zebra mussel populations. Freshwater Biology 56: 1630–1637.

    Article  Google Scholar 

  • Colautti, R. I., A. Ricciardi, I. A. Grigorovich & H. J. MacIsaac, 2004. Is invasion success explained by the enemy release hypothesis? Ecology Letters 7: 721–733.

    Article  Google Scholar 

  • Colautti, R. I., I. A. Grigorovich & H. J. MacIsaac, 2006. Propagule pressure: a null model for biological invasions. Biological Invasions 8: 1023–1037.

    Article  Google Scholar 

  • Connelly, N. A., C. R. O’Neill, B. A. Knuth & T. L. Brown, 2007. Economic impacts of zebra mussels on drinking water treatment and electric power generation facilities. Environmental Management 40: 105–112.

    Article  PubMed  Google Scholar 

  • Covich, A. P., L. L. Dye & J. S. Mattice, 1981. Crayfish predation on Corbicula under laboratory conditions. American Midland Naturalist 105: 181–188.

    Article  Google Scholar 

  • Cox, G. W., 2004. Alien Species and Evolution. Island Press, Washington, DC.

    Google Scholar 

  • deRivera, C. E., G. M. Ruiz, A. H. Hines & P. Jivoff, 2005. Biotic resistance to invasion: native predator limits abundance and distribution of an introduced crab. Ecology 86: 3364–3376.

    Article  Google Scholar 

  • Eggleton, M. A., L. E. Miranda & J. P. Kirk, 2004. Assessing the potential for fish predation to impact zebra mussels (Dreissena polymorpha): insight from bioenergetics models. Ecology of Freshwater Fish 13: 85–95.

    Article  Google Scholar 

  • French III, J. R. P., 1993. How well can fishes prey on zebra mussels in eastern North America? Fisheries 18: 13–19.

    Article  Google Scholar 

  • Ghedotti, M. J., J. C. Smihula & G. R. Smith, 1995. Zebra mussel predation by round gobies in the laboratory. Journal of Great Lakes Research 21: 665–669.

    Article  Google Scholar 

  • Havel, J. E., J. B. Shurin & J. R. Jones, 2005. Environmental limits to a rapidly spreading exotic cladoceran. Ecoscience 12: 376–385.

    Article  Google Scholar 

  • Hoyle, J. A., J. N. Bowlby & B. J. Morrison, 2008. Lake whitefish and walleye population responses to dreissenid mussel invasion in eastern Lake Ontario. Aquatic Ecosystem Health and Management 11: 403–411.

    Article  Google Scholar 

  • Idrisi, N., E. L. Mills, L. G. Rudstam & D. J. Stewart, 2001. Impact of zebra mussels (Dreissena polymorpha) on the pelagic trophic levels of Oneida Lake, New York. Canadian Journal of Fisheries and Aquatic Science 58: 1430–1441.

    Article  CAS  Google Scholar 

  • Johnson, T. B., D. B. Bunnell & C. T. Knight, 2005. A potential new energy pathway in central Lake Erie: the round goby connection. Journal of Great Lakes Research 31: 238–251.

    Article  Google Scholar 

  • Jude, D. J., J. Janssen & G. Crawford, 1995. Ecology, distribution and impact of the newly introduced round and tubenose gobies on the biota of the St. Clair and Detroit rivers. In Munawar, M., T. Edsall & J. Leach (eds), The Lake Huron Ecosystem: Ecology, Fisheries and Management. Ecovision World Monograph Series. SPB Academic Publishing, The Hague: 447–460.

    Google Scholar 

  • Kennedy, T. A., S. Naeem, K. M. Howe, J. M. H. Knops, D. Tilman & P. Relch, 2002. Biodiversity as a barrier to ecological invasion. Nature 417: 636–638.

    Article  PubMed  CAS  Google Scholar 

  • Kornis, M. S., N. Mercado-Silva & M. J. Vander Zanden, 2012. Twenty years of invasion: a review of round goby Neogobius melanostomus biology, spread and ecological implications. Journal of Fish Biology 80: 235–285.

    Article  PubMed  CAS  Google Scholar 

  • Leach, J. H., 1995. Non-indigenous species in the Great Lakes: were colonization and damage to ecosystem health predictable? Journal of Aquatic Ecosystem Health 4: 117–128.

    Article  Google Scholar 

  • Lodge, D. M., M. W. Kershner, J. E. Aloi & A. P. Covich, 1994. Effects of an omnivorous crayfish (Orconectes rusticus) on a freshwater littoral food web. Ecology 75: 1265–1281.

    Article  Google Scholar 

  • Love, J. & J. F. Savino, 1993. Crayfish (Orconectes virilis) predation on zebra mussels (Dreissena polymorpha). Journal of Freshwater Ecology 8: 253–259.

    Article  Google Scholar 

  • MacIsaac, H. J., 1994. Size-selective predation on zebra mussels (Dreissena polymorpha) by crayfish (Orconectes propinquus). Journal of the North American Benthological Society 13: 206–216.

    Article  Google Scholar 

  • MacIsaac, H. J., 1996. Potential abiotic and biotic impacts of zebra mussels on the inland waters of North America. American Zoologist 36: 287–299.

    Google Scholar 

  • Magoulick, D. D. & L. C. Lewis, 2002. Predation on exotic zebra mussels by native fishes: effects on predator and prey. Freshwater Biology 47: 1908–1918.

    Article  Google Scholar 

  • Martin, G. W. & L. D. Corkum, 1994. Predation of zebra mussels by crayfish. Canadian Journal of Zoology 72: 1867–1871.

    Article  Google Scholar 

  • Mills, E. L., J. L. Forney & K. T. Holeck, 2013. Oneida Lake: a century of biotic introductions and ecosystem change. In Rudstam, L. G., E. L. Mills, J. R. Jackson & D. J. Stewart (eds), Oneida Lake: Long-Term Dynamics of a Managed Ecosystem and Its Fisheries. American Fisheries Society, Bethesda (in press).

  • Naddafi, R. & L. G. Rudstam, 2013. Predator diversity effects in an exotic freshwater food web. PLoS ONE: e72599. doi:10.1371/journal.pone.0072599.

  • Naddafi, R., P. Eklöv & K. Pettersson, 2007. Non-lethal predator effects on the feeding rate and prey selection of the exotic zebra mussel Dreissena polymorpha. Oikos 116: 1289–1298.

    Article  Google Scholar 

  • Naddafi, R., K. Pettersson & P. Eklöv, 2010. Predation and physical environment structure the density and population size structure of zebra mussels. Journal of the North American Benthological Society 29: 444–453.

    Article  Google Scholar 

  • Naddafi, R., T. Blenckner, P. Eklöv & K. Pettersson, 2011. Physicochemical properties determine zebra mussel invasion success in lakes. Hydrobiologia 669: 227–236.

    Article  CAS  Google Scholar 

  • Naddafi, R., W. Goedkoop, U. Grandin & P. Eklöv, 2012. Variation in tissue stoichiometry and condition of zebra mussels in invaded Swedish lakes. Biological Invasions 14: 2117–2131.

    Article  Google Scholar 

  • Nagelkerke, L. A. J. & F. A. Sibbing, 1996. Efficiency of feeding on zebra mussel (Dreissena polymorpha) by common bream (Abramis brama), white bream (Blicca bjoerkna), and roach (Rutilus rutilus): the effects of morphology and behavior. Canadian Journal of Fisheries and Aquatic Sciences 53: 2847–2861.

    Article  Google Scholar 

  • Nyström, P., 2002. Ecology. In Holdich, D. M. (ed.), Biology of Freshwater Crayfish. Blackwell Science, Oxford: 192–224.

    Google Scholar 

  • Perry, W. L., D. M. Lodge & G. A. Lamberti, 1997. Impact of crayfish predation on exotic zebra mussels and native invertebrates in a lake-outlet stream. Canadian Journal of Fisheries and Aquatic Sciences 54: 120–125.

    Google Scholar 

  • Peterson, A. T. & D. A. Vieglais, 2001. Predicting species invasions using ecological niche modeling. BioScience 51: 363–371.

    Article  Google Scholar 

  • Piesik, Z., 1974. The role of the crayfish Orconectes limosus (Raf.) in extinction of Dreissena polymorpha (Pall.) subsisting on steelon-net. Polskie Archiwum Hydrobiologii 21: 401–410.

    Google Scholar 

  • Pothoven, S. A. & C. P. Madenjian, 2008. Changes in consumption by alewives and lake whitefish after dreissenid mussel invasions in Lakes Michigan and Huron. North American Journal of Fisheries Management 28: 308–320.

    Article  Google Scholar 

  • Ray, W. J. & L. D. Corkum, 1997. Predation of zebra mussels by round gobies, Neogobius melanostomus. Environmental Biology of Fishes 50: 267–273.

    Article  Google Scholar 

  • Reynolds, J. D. & R. Donohoe, 2001. Crayfish predation experiments on the introduced zebra mussel, Dreissena polymorpha, in Ireland, and their potential for biocontrol. Bulletin Francais de la Pêche et de la Pisciculture 361: 669–681.

  • Rudstam, L. G., 2013. Limnological data and depth profile from Oneida Lake, New York, 1975–2011. Knowledge Network for Biocomplexity. http://knb.ecoinformatics.org/knb/metacat/kgordon.35.42/default.

  • Sakai, A. K., F. W. Allendorf, J. S. Holt, D. M. Lodge, J. Molofsky, K. A. With, S. Baughman, R. J. Cabin, J. E. Cohen, N. C. Ellstrand, D. E. McCauley, P. O’Neil, I. M. Parker, J. N. Thompson & S. G. Weller, 2001. The population biology of invasive species. Annual Review of Ecology and Systematics 32: 305–332.

    Article  Google Scholar 

  • Schreiber, S., T. Odelstrom, K. Pettersson & D. Eichelberg, 1998. The zebra mussel Dreissena polymorpha as a food source for the signal crayfish Pacifastacus leniusculus in Lake Erken – laboratory experiments. Ergebnisse der Limnologie 51: 169–176.

    Google Scholar 

  • Simberloff, D. & L. Gibbons, 2004. Now you see them, now you don’t – population crashes of established introduced species. Biological Invasions 6: 161–172.

    Article  Google Scholar 

  • Strayer, D. L., N. Cid & H. M. Malcom, 2011. Long-term changes in a population of an invasive bivalve and its effects. Oecologia 165: 1063–1072.

    Article  PubMed  Google Scholar 

  • Vanderploeg, H. A., T. F. Nalepa, D. J. Jude, E. L. Mills, K. T. Holeck, J. R. Liebig, I. A. Grigorovich & H. Ojaveer, 2002. Dispersal and emerging ecological impacts of Ponto-Caspian species in the Laurentian Great Lakes. Canadian Journal of Fisheries and Aquatic Science 59: 1209–1228.

    Article  Google Scholar 

  • Walsh, M. G., D. E. Dittman & R. O. O’Gorman, 2007. Occurrence and food habits of the round goby in the profundal zone of southwestern Lake Ontario. Journal of Great Lakes Research 33: 83–92.

    Article  Google Scholar 

  • Watzin, M. C., K. Joppe-Mercure, J. Rowder, B. Lancaster & L. Bronson, 2008. Significant fish predation on zebra mussels Dreissena polymorpha in Lake Champlain, U.S.A. Journal of Fish Biology 73: 1585–1599.

    Article  Google Scholar 

  • Zipser, E. & G. J. Vermeij, 1978. Crushing behaviour of tropical and temperate crabs. Journal of Experimental Marine Biology and Ecology 31: 155–172.

    Article  Google Scholar 

  • zu Ermgassen, P. S. E. & D. C. Aldridge, 2011. Predation by the invasive American signal crayfish, Pacifastacus leniusculus Dana, on the invasive zebra mussel, Dreissena polymorpha Pallas: the potential for control and facilitation. Hydrobiologia 658: 303–315.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Thomas Brooking, Scott Krueger, James Watkins, William Fetzer, Nazila Koupayeh, and Dana Seidel for assistance in the field and Brian Young and Bill Thelen for help with the experimental setup. We are also grateful to the two anonymous reviewers as well as Matthew Kornis and the editor John Havel for valuable comments, which helped improve the manuscript. We thank Kjell Leonardsson for helpful discussions. This research was supported by the Swedish Research Council (VR) (registration number: 623-2008-486) to RN and a grant from the Cornell University Agricultural Experiment Station to LGR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rahmat Naddafi.

Additional information

Handling editor: John Havel

Rights and permissions

Reprints and permissions

About this article

Cite this article

Naddafi, R., Rudstam, L.G. Predation on invasive zebra mussel, Dreissena polymorpha, by pumpkinseed sunfish, rusty crayfish, and round goby. Hydrobiologia 721, 107–115 (2014). https://doi.org/10.1007/s10750-013-1653-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-013-1653-z

Keywords

Navigation