Skip to main content

Advertisement

Log in

Variability of water temperature may influence food-chain length in temperate streams

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Food-chain length (FCL) is commonly used in ecological investigations to gain insight into how ecosystems function. Several studies have investigated the mechanisms underlying FCL patterns, but none has specifically examined the effect of temperature variability. In river ecosystems, water temperature variability can modify community structure, individuals’ activity, and individuals’ physiological rates, among other things. As such, we expected that it would negatively influence FCL. To test this prediction, we took advantage of a dataset comprising five streams, which mainly differ according to their temperature variability. At each stream, we (i) studied the species composition of macroinvertebrates and fish, and using nitrogen and carbon stable isotopes, (ii) estimated realized FCL, and (iii) examined food web structure. For macroinvertebrates, but not for fish, species composition differed among sites displaying low and high temperature variability. FCL was negatively influenced by temperature variability. Confirming this trend, we found a highly significant linear relationship between FCL and temperature variability using data from the literature. As for food web structure, the trophic position of filter-feeders/shredders may explain the FCL differences among sites. Our study gives additional support to the “dynamic stability” hypothesis and advances a step further by suggesting that temperature variability alone may reduce FCL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abdoli, A., D. Pont & P. Sagnes, 2005. Influence of female age, body size and environmental conditions on annual egg production of the bullhead. Journal of Fish Biology 67: 1327–1341.

    Article  Google Scholar 

  • Abdoli, A., D. Pont & P. Sagnes, 2007. Intrabasin variations in age and growth of bullhead: the effects of temperature. Journal of Fish Biology 70: 1224–1238.

    Article  Google Scholar 

  • Anderson, C. & G. Cabana, 2007. Estimating the trophic position of aquatic consumers in river food webs using stable nitrogen isotopes. Journal of the North American Benthological Society 26: 273–285.

    Article  CAS  Google Scholar 

  • Borderelle, A. L., D. Gerdeaux, P. Giraudoux & V. Verneaux, 2009. Influence of watershed′s anthropogenic activities on fish nitrogen and carbon stable isotope ratios in nine French lakes. Knowledge and Management of Aquatic Ecosystems 392: 1–13.

    Google Scholar 

  • Cabana, G. & J. B. Rasmussen, 1996. Comparison of aquatic food chains using nitrogen isotopes. Proceedings of the National Academy of Sciences of the United States of America 93: 10844–10847.

    Article  PubMed  CAS  Google Scholar 

  • Carpenter, S. R. & J. F. Kitchell, 1993. The Trophic Cascade in Lakes. Cambridge University Press, Cambridge.

    Book  Google Scholar 

  • De Angelis, D. L., S. M. Bartell & A. L. Brenkert, 1989. Effects of Nutrient Recycling and Food-Chain Length on Resilience. The American Naturalist 134: 778–805.

    Article  Google Scholar 

  • Death, R. G., 2008. The effect of flood on aquatic invertebrate communities. In Lancaster, J. & R. A. Briers (eds), Aquatic Insects: Challenges to Populations. CABI, Oxford: 103–121.

    Chapter  Google Scholar 

  • Duffy, J. E., J. P. Richardson & K. E. France, 2005. Ecosystem consequences of diversity depend on food chain length in estuarine vegetation. Ecology Letters 8: 301–309.

    Article  Google Scholar 

  • Finlay, J., 2004. Patterns and controls of lotic algal stable carbon isotope ratios. Limnology and Oceanography 49: 850–861.

    Article  CAS  Google Scholar 

  • Finlay, J. & C. Kendall, 2007. Stable isotope tracing of temporal and spatial variability in organic matter sources to freshwater ecosystems. In Michener, R. & K. Lajtha (eds), Stable Isotopes in Ecology and Environmental Science. Blackwell Publishing, Oxford: 283–333.

    Chapter  Google Scholar 

  • Fischer, S. & H. Kummer, 2000. Effects of residual flow and habitat fragmentation on distribution and movement of bullhead (Cottus gobio L.) in an alpine stream. Hydrobiologia 422–423: 305–317.

    Article  Google Scholar 

  • Garrott, R. A., L. L. Eberhardt, J. K. Otton, P. J. White & M. A. Chaffee, 2002. A geochemical trophic cascade in Yellowstone’s geothermal environments. Ecosystems 5: 659–666.

    Article  CAS  Google Scholar 

  • Hairston Jr., N. G. & N. G. Hairston Sr., 1993. Cause-effect relationships in energy flow, trophic structure, and interspecific interactions. The American Naturalist 142: 379–411.

    Article  Google Scholar 

  • Hairston, N. G., F. E. Smith & L. B. Slobodkin, 1960. Community structure, population control, and competition. The American Naturalist 94: 421–425.

    Article  Google Scholar 

  • Jardine, T. D., M. Gray, S. MacWilliam & R. Cunjak, 2005. Stable isotope variability in tissues of temperate stream fishes. Transactions of the American Fisheries Society 134: 1103–1110.

    Article  CAS  Google Scholar 

  • Jenkins, G., G. Woodward & A. Hildrew, 2013. Long-term amelioration of acidity accelerates decomposition in headwater streams. Global Change Biology 19: 4, 1100–1106.

    Google Scholar 

  • Kondolf, G. M., D. R. Montgomery, H. Piégay & L. Schmitt, 2005. Geomorphic classification of rivers and streams. In Kondolf, G. M. & H. Piégay (eds), Tools in Fluvial Geomorphology. Wiley, Chichester: 171–204.

    Chapter  Google Scholar 

  • Layman, C. A., D. A. Arrington, C. G. Montaña & D. M. Post, 2007. Can stable isotope ratios provide for community-wide measures of trophic structure? Ecology 88: 42–48.

    Article  PubMed  Google Scholar 

  • Lindeman, R. L., 1942. The trophic-dynamic aspect of ecology. Ecology 23: 399–417.

    Article  Google Scholar 

  • McHugh, P. A., A. R. McIntosh & P. G. Jellyman, 2010. Dual influences of ecosystem size and disturbance on food chain length in streams. Ecology Letters 13: 881–890.

    Article  PubMed  Google Scholar 

  • Pauly, D., V. Christensen, J. Dalsgaard, R. Froese & F. Torres, 1998. Fishing down marine food webs. Science 279: 860–863.

    Article  PubMed  CAS  Google Scholar 

  • Persat, H. & G. H. Copp, 1990. Electric fishing and point abundance sampling for the ichthyology of large rivers. In Cowx, I. G. (ed.), Developments in Electric Fishing. Kluwer, Amsterdam: 197–209.

    Google Scholar 

  • Pimm, S. L. & J. H. Lawton, 1977. Number of trophic levels in ecological communities. Nature 268: 329–331.

    Article  Google Scholar 

  • Post, D. M., 2002a. The long and short of food-chain length. Trends in Ecology and Evolution 17: 269–277.

    Article  Google Scholar 

  • Post, D. M., 2002b. Using stable isotopes to estimate trophic position: models, methods, and assumptions. Ecology 83: 703–718.

    Article  Google Scholar 

  • Post, D. M., 2007. Testing the productive-space hypothesis: rational and power. Oecologia 153: 973–984.

    Article  PubMed  Google Scholar 

  • Post, D. M. & G. Takimoto, 2007. Proximate structural mechanisms for variation in food-chain length. Oikos 116: 775–782.

    Article  Google Scholar 

  • Post, D. M., M. L. Pace & N. G. Hairston, 2000. Ecosystem size determines food-chain length in lakes. Nature 405: 1047–1049.

    Article  PubMed  CAS  Google Scholar 

  • Power, M., K. R. R. A. Guiguer & D. R. Barton, 2003. Effects of temperature on isotopic enrichment in Daphnia magna: implications for aquatic food-web studies. Rapid Communications in Mass Spectrometry 17: 1619–1625.

    Article  PubMed  CAS  Google Scholar 

  • Reyjol, Y., J. P. Léna, F. Hervant & D. Pont, 2009. Effects of temperature on biological and biochemical indicators of the life-history strategy of bullhead Cottus gobio. Journal of Fish Biology 75: 1427–1445.

    Article  PubMed  CAS  Google Scholar 

  • Rutherford, J., S. Blackett, C. Blackett, L. Saito & R. Davies-Colley, 1997. Predicting the effects of shade on water temperature in small streams. New Zealand Journal of Marine and Freshwater Research 31: 707–721.

    Article  Google Scholar 

  • Sabo, J. L. & D. M. Post, 2008. Quantifying periodic, stochastic, and catastrophic environmental variation. Ecological Monographs 78: 19–40.

    Article  Google Scholar 

  • Sabo, J. L., J. C. Finlay & D. M. Post, 2009. Food chains in freshwaters. Annals of the New York Academy of Sciences 1162: 187–220.

    Article  PubMed  Google Scholar 

  • Sabo, J. L., J. C. Finlay, T. Kennedy & D. M. Post, 2010. The role of discharge variation in scaling of drainage area and food chain length in rivers. Science 330: 965–967.

    Google Scholar 

  • Smyntek, P., S. Maberly & J. Grey, 2012. Dissolved carbon dioxide concentration controls baseline stable carbon isotope signatures of a lake food web. Limnology and Oceanography 57: 1292–1302.

    Article  CAS  Google Scholar 

  • Sterner, R., A. Bajpai & T. Adams, 1997. The enigma of food chain length: absence of theoretical evidence for dynamic constraints. Ecology 78: 2258–2262.

    Article  Google Scholar 

  • Tachet, H., P. Richoux, M. Bournaud & P. Usseglio-Polatera, 2010. Invertébrés d’eau douce: Systématique, biologie, écologie, 2nd ed. CNRS Editions, Paris.

    Google Scholar 

  • Takimoto, G. & D. M. Post, 2012. Environmental determinants of food-chain length: a meta-analysis. Ecological Research. doi:10.1007/s11284-012-0943-7.

  • Thorp, J. H. & M. D. Delong, 2002. Dominance of autochthonous autotrophic carbon in food webs of heterotrophic rivers. Oikos 96: 543–550.

    Article  Google Scholar 

  • Townsend, C. R., R. M. Thompson, A. R. McIntosh, C. Kilroy, E. Edwards & M. R. Scarsbrook, 1998. Disturbance, resource supply, and food-web architecture in streams. Ecology Letters 1: 200–209.

    Article  Google Scholar 

  • Usseglio-Polatera, P., M. Bournaud, P. Richoux & H. Tachet, 2000. Biomonitoring through biological traits of benthic macroinvertebrates: how to use species trait databases? Hydrobiologia 422–423: 153–162.

    Article  Google Scholar 

  • Vander Zanden, M. J. & J. B. Rasmussen, 1999. Primary consumer δ13C and δ15N and the trophic position of aquatic consumers. Ecology 80: 1395–1404.

    Article  Google Scholar 

  • Vander Zanden, M. J. & J. B. Rasmussen, 2001. Variation in δ15N and δ13C trophic fractionation: implications for aquatic food web studies. Limnology and Oceanography 46: 2061–2066.

    Article  CAS  Google Scholar 

  • Vanderklift, M. A. & S. Ponsard, 2003. Sources of variation in consumer-diet δ15N enrichment: a meta-analysis. Oecologia 136: 169–182.

    Article  PubMed  Google Scholar 

  • Wallace, R. K., 1981. An assessment of diet-overlap indexes. Transactions of the American Fisheries Society 110: 72–76.

    Article  Google Scholar 

  • Walters, A. W. & D. M. Post, 2008. An experimental disturbance alters fish size structure but not food chain length in streams. Ecology 89: 3261–3267.

    Article  PubMed  Google Scholar 

  • Werner, R. A. & W. A. Brand, 2001. Referencing strategies and techniques in stable isotope ratio analysis. Rapid Communications in Mass Spectrometry 15: 501–519.

    Article  PubMed  CAS  Google Scholar 

  • Whittaker, R. H. & C. W. Fairbanks, 1958. A study of plankton copepod communities in the Columbia Basin, Southeastern Washington. Ecology 39: 46–65.

    Article  Google Scholar 

  • Woodland, R., M. Rodríguez, P. Magnan, H. Glémet & G. Cabana, 2012. Incorporating temporally dynamic baselines in isotopic mixing models. Ecology 93: 131–144.

    Article  PubMed  Google Scholar 

  • Woodward, G., J. P. Benstead, O. S. Beveridge, J. Blanchard, T. Brey, L. E. Brown, W. F. Cross, N. Friberg, T. C. Ings, U. Jacob, S. Jennings, M. E. Ledger, A. M. Milner, J. M. Montoya, E. O’Gorman, J. M. Olesen, O. L. Petchey, D. E. Pichler, D. C. Reuman, M. S. A. Thompson, F. J. F. Van Veen & G. Yvon-Durocher, 2010a. Ecological networks in a changing climate. Advances in Ecological Research 42: 71–138.

    Article  Google Scholar 

  • Woodward, G., J. B. Dybkjaer, J. S. Òlafsson, G. M. Gìslason, E. R. Hannesdòttir & N. Friberg, 2010b. Sentinel systems on the razor’s edge: effects of warming on Arctic geothermal stream ecosystems. Global Change Biology 16: 1979–1991.

    Article  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge Virginie Raymond for assistance in the field and sample preparation. Stable isotope analyses were carried out with EA-IRMS at Cemagref/Irstea Antony, Research Unit HBAN with the patient support of Jonathan Epissard. Bernard Hugueny and Olivier Delaigue gave helpful recommendations for statistical analyses. We also thank Michel Sanchez for kindly allowing us to work on his properties and for his welcome. We express our gratitude to Julien Peschard, who created the site map. We thank Deborah Slawson for copyediting the initial manuscript. This work was funded by the French Ministry of Ecology and Sustainable Development (MEDDAD) under a “Global Change and demographic strategies of fish populations” contract (APR Biodiversity and Climate Change 2005), 2007–2009.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Hette-Tronquart.

Additional information

Handling editor: M. Power

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 51 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hette-Tronquart, N., Roussel, JM., Dumont, B. et al. Variability of water temperature may influence food-chain length in temperate streams. Hydrobiologia 718, 159–172 (2013). https://doi.org/10.1007/s10750-013-1613-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-013-1613-7

Keywords

Navigation