Skip to main content

Advertisement

Log in

Seasonal comparison of community-level size-spectra in southern coalfield streams of West Virginia (USA)

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Inverse scaling relationships between average body mass (M) and density (D) have been reported in many lake and marine ecosystems but are less well documented in lotic systems. We used quantitative samples of benthic macroinvertebrate and fish D to model the D versus M (i.e., D ∞ 1/M) relationship in central Appalachian streams of the eastern USA. Specifically, we used the ataxic ‘size-spectra’ method (individuals identified only by size, not taxonomic identity, then aggregated within log2 M bins) to model D as a function of M. Repeat samples were collected from three study streams in March, May, August, and October, allowing us to test for seasonal differences in the slopes and intercepts of size-spectra models, using linear mixed-effects modeling. Size-spectra slopes were significantly different among months, decreasing from March (slope = − 1.73) to May (− 1.81), then increasing to August (− 1.62) and October (− 1.65). Intercepts also differed among months but showed the opposite trend: intercepts increased from March (intercept = 0.51) to May (0.91), then decreased through August (0.44) and October (0.37). Size-spectra slopes and intercepts did not differ from the overall model parameters when estimated separately for macroinvertebrate and fish data. Finally, times series data on water temperature and discharge were used to show that size-spectra parameters may respond in predictable ways to the accumulation of degree days (i.e., the growing season) and to episodic flood events.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Allan, J. D., 1982. Feeding habits and prey consumption of three setipalpian stoneflies (Plecoptera) in a mountain stream. Ecology 63: 26–34.

    Article  Google Scholar 

  • Andersen, K. H., N. S. Jacobsen & K. D. Farnsworth, 2016. The theoretical foundations for size spectrum models of fish communities. Canadian Journal of Fisheries and Aquatic Sciences 73: 575–588.

    Article  Google Scholar 

  • Bates, D., M. Maechler, B. Bolker & S. Walker, 2015. Fitting linear mixed-effects models using lme4. Journal of Statistical Software 67: 1–48.

    Article  Google Scholar 

  • Benejam, L., F. Teixeira-de Mello, M. Meerhoff, M. Loureiro, E. Jeppesen & S. Brucet, 2015. Assessing effects of change in land use on size-related variables of fish in subtropical streams. Canadian Journal of Fisheries and Aquatic Sciences 73: 547–556.

    Article  Google Scholar 

  • Benke, A. C., A. D. Huryn, L. A. Smock & J. B. Wallace, 1999. Length-mass relationships for freshwater macroinvertebrates in North America with particular reference to the Southeastern United States. Journal of the North American Benthological Society 18: 308–343.

    Article  Google Scholar 

  • Bernhardt, E. S., B. D. Lutz, R. S. King, J. P. Fay, C. E. Carter, A. M. Helton, D. Campagna & J. Amos, 2012. How many mountains can we mine? Assessing the regional degradation of central Appalachian rivers by surface coal mining. Environmental Science & Technology 46: 8115–8122.

    Article  CAS  Google Scholar 

  • Blanco, J. M., F. Echevarría & C. M. García, 1994. Dealing with size-spectra: some conceptual and mathematical problems. Scientia Marina 58: 17–29.

    Google Scholar 

  • Bolker, B. M., M. E. Brooks, C. J. Clark, S. W. Geange, J. R. Poulsen, M. H. H. Stevens & J.-S. S. White, 2009. Generalized linear mixed models: a practical guide for ecology and evolution. Trends in Ecology & Evolution 24: 127–135.

    Article  Google Scholar 

  • Boudreau, P. R. & L. M. Dickie, 1989. Biological model of fisheries production based on physiological and ecological scalings of body size. Canadian Journal of Fisheries and Aquatic Sciences 46: 614–623.

    Article  Google Scholar 

  • Brittain, J. E., 1982. Biology of mayflies. Annual Review of Entomology 27: 119–147.

    Article  Google Scholar 

  • Brittain, J. E. & T. J. Eikeland, 1988. Invertebrate drift − a review. Hydrobiologia 166: 77–93.

    Article  Google Scholar 

  • Broadway, K. J., M. Pyron, J. R. Gammon & B. A. Murry, 2015. Shift in a large river fish assemblage: body-size and trophic structure dynamics. PLoS ONE 10: e0124954.

    Article  PubMed  PubMed Central  Google Scholar 

  • Carle, F. L. & M. R. Strub, 1978. New method for estimating population-size from removal data. Biometrics 34: 621–630.

    Article  Google Scholar 

  • Cattaneo, A., 1993. Size-spectra of benthic communities in Laurentian streams. Canadian Journal of Fisheries and Aquatic Sciences 50: 2659–2666.

    Article  Google Scholar 

  • Chang, C.-W., T. Miki, F.-K. Shiah, S.-J. Kao, J.-T. Wu, A. R. Sastri & C.-H. Hsieh, 2014. Linking secondary structure of individual size distribution with nonlinear size–trophic level relationship in food webs. Ecology 95: 897–909.

    Article  PubMed  Google Scholar 

  • Chezik, K. A., N. P. Lester & P. A. Venturelli, 2013. Fish growth and degree-days I: selecting a base temperature for a within-population study. Canadian Journal of Fisheries and Aquatic Sciences 71: 47–55.

    Article  Google Scholar 

  • Corkum, L. D., 1992. Spatial distributional patterns of macroinvertebrates along rivers within and among biomes. Hydrobiologia 239: 101–114.

    Article  Google Scholar 

  • Cyr, H. & R. H. Peters, 1996. Biomass-size spectra and the prediction of fish biomass in lakes. Canadian Journal of Fisheries and Aquatic Sciences 53: 994–1006.

    Article  Google Scholar 

  • Cyr, H., J. A. Downing & R. H. Peters, 1997. Density-body size relationships in local aquatic communities. Oikos 79: 333–346.

    Article  Google Scholar 

  • Daan, N., H. Gislason, J. G. Pope & J. C. Rice, 2005. Changes in the North Sea fish community: evidence of indirect effects of fishing? ICES Journal of Marine Science 62: 177–188.

    Article  Google Scholar 

  • Datta, S., G. W. Delius & R. Law, 2010. A jump-growth model for predator–prey dynamics: derivation and application to marine ecosystems. Bulletin of Mathematical Biology 72: 1361–1382.

    Article  PubMed  Google Scholar 

  • Dickie, L. M., S. R. Kerr & P. R. Boudreau, 1987. Size-dependent processes underlying regularities in ecosystem structure. Ecological Monographs 57: 233–250.

    Article  Google Scholar 

  • Dossena, M., G. Yvon-Durocher, J. Grey, J. M. Montoya, D. M. Perkins, M. Trimmer & G. Woodward, 2012. Warming alters community size structure and ecosystem functioning. Proceedings of the Royal Society B: Biological Sciences 279: 3011–3019.

    Article  PubMed  PubMed Central  Google Scholar 

  • Edwards, A. M., J. P. W. Robinson, M. J. Plank, J. K. Baum & J. L. Blanchard, 2017. Testing and recommending methods for fitting size-spectra to data. Methods in Ecology and Evolution 8: 57–67.

    Article  Google Scholar 

  • Füreder, L., M. Wallinger & R. Burger, 2005. Longitudinal and seasonal pattern of insect emergence in alpine streams. Aquatic Ecology 39: 67–78.

    Article  Google Scholar 

  • Gaedke, U., 1992. The size distribution of plankton biomass in a large lake and its seasonal variability. Limnology and Oceanography 37: 1202–1220.

    Article  Google Scholar 

  • Gilljam, D., A. Thierry, F. K. Edwards, D. Figueroa, A. T. Ibbotson, J. I. Jones, R. B. Lauridsen, O. L. Petchey, G. Woodward & B. Ebenman, 2011. Seeing double: size-based and taxonomic views of food web structure. Advances in Ecological Research 45: 67–133.

    Article  Google Scholar 

  • Harper, M. P. & B. L. Peckarsky, 2006. Emergence cues of a mayfly in a high-altitude stream ecosystem: potential response to climate change. Ecological Applications 16: 612–621.

    Article  PubMed  Google Scholar 

  • Heath, M. R., 1995. Size spectrum dynamics and the planktonic ecosystem of Loch Linnhe. ICES Journal of Marine Science 52: 627–642.

    Article  Google Scholar 

  • Hershey, A. E., G. A. Lamberti, D. T. Chaloner & R. M. Northington, 2010. Aquatic insect ecology. In Thorp, J. H. & A. P. Covich (eds.), Ecology and classification of North American freshwater invertebrates. Academic Press, Amsterdam: 659–694.

    Chapter  Google Scholar 

  • Huryn, A. D. & A. C. Benke, 2007. Relationship between biomass turnover and body size for stream communities. In Hildrew, A., D. Raffaelli & R. Edmonds-Brown (eds.), Body size: the structure and function of aquatic ecosystems. Cambridge University Press, Cambridge: 55–76.

    Chapter  Google Scholar 

  • Huryn, A. D. & J. B. Wallace, 2000. Life history and production of stream insects. Annual Review of Entomology 45: 83–110.

    Article  CAS  PubMed  Google Scholar 

  • Hynes, H. B. N., 1970. The ecology of stream insects. Annual Review of Entomology 15: 25–42.

    Article  Google Scholar 

  • Jenkins, R. E. & N. M. Burkhead, 1994. Freshwater fishes of Virginia. American Fisheries Society, Bethesda, Maryland.

    Google Scholar 

  • Jennings, S. & J. L. Blanchard, 2004. Fish abundance with no fishing: predictions based on macroecological theory. Journal of Animal Ecology 73: 632–642.

    Article  Google Scholar 

  • Jennings, S. & S. Mackinson, 2003. Abundance–body mass relationships in size-structured food webs. Ecology Letters 6: 971–974.

    Article  Google Scholar 

  • Johnson, B. R., K. M. Fritz & R. Price, 2013. Estimating benthic secondary production from aquatic insect emergence in streams affected by mountaintop removal coal mining, West Virginia, USA. Fundamental and Applied Limnology 182: 191–204.

    Article  Google Scholar 

  • Kerr, S. R. & L. M. Dickie, 2001. The biomass spectrum: a predator-prey theory of aquatic production. Columbia University Press, New York.

    Google Scholar 

  • Lawrence, J. E., K. B. Lunde, R. D. Mazor, L. A. Bêche, E. P. McElravy & V. H. Resh, 2010. Long-term macroinvertebrate responses to climate change: implications for biological assessment in mediterranean-climate streams. Journal of the North American Benthological Society 29: 1424–1440.

    Article  Google Scholar 

  • Marquet, P. A., R. A. Quinones, S. Abades, F. Labra, M. Tognelli, M. Arim & M. Rivadeneira, 2005. Scaling and power-laws in ecological systems. Journal of Experimental Biology 208: 1749–1769.

    Article  PubMed  Google Scholar 

  • Martínez, A., A. Larrañaga, A. Miguélez, G. Yvon-Durocher & J. Pozo, 2016. Land use change affects macroinvertebrate community size-spectrum in streams: the case of Pinus radiata plantations. Freshwater Biology 61: 69–79.

    Article  Google Scholar 

  • Maxwell, A. E., M. P. Strager, C. B. Yuill & J. T. Petty, 2012. Modeling critical forest habitat in the Southern Coal Fields of West Virginia. International Journal of Ecology. https://doi.org/10.1155/2012/182683.

    Google Scholar 

  • McKay, L., T. Bondelid, T. Dewald, A. Rea, C. Johnston & R. Moore, 2015. NHDPlus version 2: user guide (Data Model Version 2.1). Available at: ftp.horizon-systems.com/NHDplus/NHDPlusV21/Documentation/NHDPlusV2_User_Guide.pdf.

  • Merritt, R. W., K. W. Cummins & M. B. Berg, 2008. An introduction to the aquatic insects of North America. Kendall/Hunt, Dubuque, Iowa.

    Google Scholar 

  • Miller, A. M. & S. W. Golladay, 1996. Effects of spates and drying on macroinvertebrate assemblages of an intermittent and a perennial prairie stream. Journal of the North American Benthological Society 15: 670–689.

    Article  Google Scholar 

  • Mittelbach, G. G. & L. Persson, 1998. The ontogeny of piscivory and its ecological consequences. Canadian Journal of Fisheries and Aquatic Sciences 55: 1454–1465.

    Article  Google Scholar 

  • Morin, A., 1997. Empirical models predicting population abundance and productivity in lotic systems. Journal of the North American Benthological Society 16: 319–337.

    Article  Google Scholar 

  • Morin, A. & D. Nadon, 1991. Size distribution of epilithic lotic invertebrates and implications for community metabolism. Journal of the North American Benthological Society 10: 300–308.

    Article  Google Scholar 

  • Morin, A., M. A. Rodríguez & D. Nadon, 1995. Temporal and environmental variation in the biomass spectrum of benthic invertebrates in streams: an application of thin-plate splines and relative warp analysis. Canadian Journal of Fisheries and Aquatic Sciences 52: 1881–1892.

    Article  Google Scholar 

  • Murphy, S. C., N. C. Collins & S. E. Doka, 2011. Thermal habitat characteristics for warmwater fishes in coastal embayments of Lake Ontario. Journal of Great Lakes Research 37: 111–123.

    Article  Google Scholar 

  • Murry, B. A. & J. M. Farrell, 2014. Resistance of the size structure of the fish community to ecological perturbations in a large river ecosystem. Freshwater Biology 59: 155–167.

    Article  Google Scholar 

  • Ohba, S.-Y., 2009. Ontogenetic dietary shift in the larvae of Cybister japonicus (Coleoptera: Dytiscidae) in Japanese rice fields. Environmental Entomology 38: 856–860.

    Article  PubMed  Google Scholar 

  • Petchey, O. L. & A. Belgrano, 2010. Body-size distributions and size-spectra: universal indicators of ecological status? Biology Letters 6: 434–437.

    Article  PubMed  PubMed Central  Google Scholar 

  • Peters, R. H., 1983. The ecological implications of body size. Cambridge University Press, Cambridge.

    Book  Google Scholar 

  • Poff, N. L., M. Palmer, P. Angermeier, R. Vadas Jr., C. Hakenkamp, A. Bely, P. Arensburger & A. Martin, 1993. Size structure of the metazoan community in a Piedmont stream. Oecologia 95: 202–209.

    Article  PubMed  Google Scholar 

  • R Core Team, 2016. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna.

    Google Scholar 

  • Ramsay, P. M., S. D. Rundle, M. J. Attrill, M. G. Uttley, P. R. Williams, P. S. Elsmere & A. Abada, 1997. A rapid method for estimating biomass size-spectra of benthic metazoan communities. Canadian Journal of Fisheries and Aquatic Sciences 54: 1716–1724.

    Article  Google Scholar 

  • Rinaldo, A., A. Maritan, K. K. Cavender-Bares & S. W. Chisholm, 2002. Cross–scale ecological dynamics and microbial size spectra in marine ecosystems. Proceedings of the Royal Society B 269: 2051–2059.

    Article  PubMed  PubMed Central  Google Scholar 

  • Schlosser, I. J., 1991. Stream fish ecology: a landscape perspective. Bioscience 41: 704–712.

    Article  Google Scholar 

  • Schmid, P. E., M. Tokeshi & J. M. Schmid-Araya, 2000. Relation between population density and body size in stream communities. Science 289: 1557–1560.

    Article  CAS  PubMed  Google Scholar 

  • Schwinghamer, P., 1981. Characteristic size distributions of integral benthic communities. Canadian Journal of Fisheries and Aquatic Sciences 38: 1255–1263.

    Article  Google Scholar 

  • Sheldon, R. W. & T. R. Parsons, 1967. A continuous size-spectrum for particulate matter in the sea. Journal of the Fisheries Research Board of Canada 24: 909–915.

    Article  Google Scholar 

  • Silvert, W. & T. Platt, 1978. Energy flux in the pelagic ecosystem: a time-dependent equation. Limnology and Oceanography 23: 813–816.

    Article  Google Scholar 

  • Smock, L. A., 1980. Relationships between body size and biomass of aquatic insects. Freshwater Biology 10: 375–383.

    Article  Google Scholar 

  • Solimini, A. G., A. Benvenuti, R. D’Olimpio, M. D. Cicco & G. Carchini, 2001. Size structure of benthic invertebrate assemblages in a Mediterranean river. Journal of the North American Benthological Society 20: 421–431.

    Article  Google Scholar 

  • Sprules, W. G. & L. E. Barth, 2016. Surfing the biomass size-spectrum: some remarks on history, theory, and application. Canadian Journal of Fisheries and Aquatic Sciences 73: 477–495.

    Article  Google Scholar 

  • Sprules, W. G. & M. Munawar, 1986. Plankton size-spectra in relation to ecosystem productivity, size, and perturbation. Canadian Journal of Fisheries and Aquatic Sciences 43: 1789–1794.

    Article  Google Scholar 

  • Stauffer Jr., J. R., J. M. Boltz & L. R. White, 1995. The fishes of West Virginia. The Proceedings of the Academy of Natural Sciences of Philadelphia 146: 1–389.

    Google Scholar 

  • Stead, T. K., J. M. Schmid-Araya, P. E. Schmid & A. G. Hildrew, 2005. The distribution of body size in a stream community: one system, many patterns. Journal of Animal Ecology 74: 475–487.

    Article  Google Scholar 

  • Stewart, K. W. & B. P. Stark, 2002. Nymphs of North American stonefly genera (Plecoptera), 2nd ed. The Caddis Press, Columbus, OH.

    Google Scholar 

  • Stock, J. D. & I. J. Schlosser, 1991. Short-term effects of a catastrophic beaver dam collapse on a stream fish community. Environmental Biology of Fishes 31: 123–129.

    Article  Google Scholar 

  • Trebilco, R., J. K. Baum, A. K. Salomon & N. K. Dulvy, 2013. Ecosystem ecology: size-based constraints on the pyramids of life. Trends in Ecology & Evolution 28: 423–431.

    Article  Google Scholar 

  • Vannote, R. L. & B. W. Sweeney, 1980. Geographic analysis of thermal equilibria: a conceptual model for evaluating the effect of natural and modified thermal regimes on aquatic insect communities. The American Naturalist 115: 667–695.

    Article  Google Scholar 

  • Vidondo, B., Y. T. Prairie, J. M. Blanco & C. M. Duarte, 1997. Some aspects of the analysis of size-spectra in aquatic ecology. Limnology and Oceanography 42: 184–192.

    Article  Google Scholar 

  • Waters, T. F., 1977. Secondary production in inland waters. Advances in Ecological Research 10: 91–164.

    Article  Google Scholar 

  • Werner, E. E. & J. F. Gilliam, 1984. The ontogenetic niche and species interactions in size-structured populations. Annual Review of Ecology and Systematics 15: 393–425.

    Article  Google Scholar 

  • White, E. P., S. K. M. Ernest, A. J. Kerkhoff & B. J. Enquist, 2007. Relationships between body size and abundance in ecology. Trends in Ecology & Evolution 22: 323–330.

    Article  Google Scholar 

  • White, E. P., B. J. Enquist & J. L. Green, 2008. On estimating the exponent of power-law frequency distributions. Ecology 89: 905–912.

    Article  PubMed  Google Scholar 

  • Woodward, G., D. C. Speirs & A. G. Hildrew, 2005. Quantification and resolution of a complex, size-structured food web. Advances in Ecological Research 36: 85–135.

    Article  Google Scholar 

  • Yurista, P. M., D. L. Yule, M. Balge, J. D. VanAlstine, J. A. Thompson, A. E. Gamble, T. R. Hrabik, J. R. Kelly, J. D. Stockwell & M. R. Vinson, 2014. A new look at the Lake Superior biomass size-spectrum. Canadian Journal of Fisheries and Aquatic Sciences 71: 1324–1333.

    Article  Google Scholar 

  • Yvon-Durocher, G., J. M. Montoya, M. Trimmer & G. Woodward, 2011a. Warming alters the size spectrum and shifts the distribution of biomass in freshwater ecosystems. Global Change Biology 17: 1681–1694.

    Article  Google Scholar 

  • Yvon-Durocher, G., J. Reiss, J. Blanchard, B. Ebenman, D. M. Perkins, D. C. Reuman, A. Thierry, G. Woodward & O. L. Petchey, 2011b. Across ecosystem comparisons of size structure: methods, approaches and prospects. Oikos 120: 550–563.

    Article  Google Scholar 

  • Zippin, C., 1958. The removal method of population estimation. The Journal of Wildlife Management 22: 82–90.

    Article  Google Scholar 

Download references

Acknowledgements

We thank Matthew Rouch, Hannah Schul, Travis Solberg, Melissa Davis, Scott Schibner, Chris Mason, and Dana Devore for their assistance in collecting field data. Comments from three anonymous reviewers improved the data analysis and discussion of results. Financial support was provided by the U.S. National Science Foundation (DEB-1553111), the Eppley Foundation for Scientific Research, and a New Faculty Startup Grant from Virginia Commonwealth University (VCU). This manuscript is VCU Rice Rivers Center contribution #82.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel J. McGarvey.

Additional information

Handling editor: Juan Carlos Molinero

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 2212 kb)

Supplementary material 2 (XLSX 23 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McGarvey, D.J., Kirk, A.J. Seasonal comparison of community-level size-spectra in southern coalfield streams of West Virginia (USA). Hydrobiologia 809, 65–77 (2018). https://doi.org/10.1007/s10750-017-3448-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-017-3448-0

Keywords

Navigation