Skip to main content
Log in

Differences in leaf nitrogen content, photosynthesis, and resource-use efficiency between Eichhornia crassipes and a native plant Monochoria vaginalis in response to altered sediment nutrient levels

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Eichhornia crassipes is one of the world’s most prevalent invasive aquatic plants, causing significant ecological and socio-economic impacts in introduced areas. In this study, we compared the leaf resource capture- and use-related traits of E. crassipes with its confamilial native aquatic plant Monochoria vaginalis at three nutrient levels. Our results showed that leaf nitrogen content based on mass, leaf nitrogen content based on area, N:C, photosynthetic rate, specific leaf area, and leaf construction cost of E. crassipes increased significantly with increasing levels of nutrition, the mean values of these traits increased 0.55, 0.35, 0.51, 0.43, 0.21, and 0.07 times from low nutrient level to high, respectively. These traits (except for the leaf construction cost) in M. vaginalis remained unchanged. At low nutrient level, M. vaginalis had a higher leaf nitrogen content, N:C, photosynthetic rate, specific leaf area, and water-use efficiency than E. crassipes. At high nutrient level, E. crassipes had a higher photosynthetic rate and photosynthetic nitrogen-use efficiency than M. vaginalis, suggesting that the invasiveness of E. crassipes was dependent on the availability of resources in environment. In addition, our results supported the fluctuating resources hypothesis, indicating that an increased level of nutrients in the environment will increase the invasiveness of E. crassipes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abbsi, S. A. & P. C. Nipaney, 1986. Infestation by aquatic weeds of the fern genus Salvinia: its status and control. Environmental Conservation 13: 235–241.

    Article  Google Scholar 

  • Baruch, Z. & G. Goldstein, 1999. Leaf construction cost, nutrient concentration, and net CO2 assimilation of native and invasive species in Hawaii. Oecologia 121: 183–192.

    Article  Google Scholar 

  • Bloom, A. J., F. S. Chapin III & H. A. Mooney, 1985. Resource limitation in plants—an economic analogy. Annual Review of Ecology and Systematics 16: 363–392.

    Google Scholar 

  • Burns, J. H., 2004. A comparison of invasive and non-invasive dayflowers (Commelinaceae) across experimental nutrient and water gradients. Diversity and Distributions 10: 387–397.

    Article  Google Scholar 

  • Chapin III, F. S., 1980. The mineral nutrition of wild plants. Annual Review of Ecology and Systematics 11: 233–260.

    Article  CAS  Google Scholar 

  • Cohen, A. N. & J. T. Carlton, 1998. Accelerating invasion rate in a highly Invaded estuary. Science 279: 555–558.

    Article  PubMed  CAS  Google Scholar 

  • D’Antonio, C. M. & S. Kark, 2002. Impacts and extent of biotic invasions in terrestrial ecosystems. Trends in Ecology & Evolution 17: 202–204.

    Article  Google Scholar 

  • Daehler, C. C., 2003. Performance comparisons of co-occurring native and alien invasive plants: implications for conservation and restoration. Annual Review of Ecology, Evolution and Systematics 34: 183–211.

    Article  Google Scholar 

  • Davis, M. A., J. P. Grime & K. Thompson, 2000. Fluctuating resources in plant communities: a general theory of invasibility. Journal of Ecology 88: 528–534.

    Article  Google Scholar 

  • Dukes, J. S. & H. A. Mooney, 1999. Does global change increase the success of biological invaders? Trends in Ecology & Evolution 14: 135–139.

    Article  Google Scholar 

  • Durand, Z. L. & G. Goldstein, 2001. Photosynthesis, photoinhibition, and nitrogen use efficiency in native and invasive tree ferns in Hawaii. Oecologia 126: 345–354.

    Article  Google Scholar 

  • Evans, J. R., 1989. Photosynthesis and nitrogen relationships in leaves of C3 plants. Oecologia 78: 9–19.

    Article  Google Scholar 

  • Feng, Y. L., 2008. Photosynthesis, nitrogen allocation and specific leaf area in invasive Eupatorium adenophorum and native Eupatorium japonicum grown at different irradiances. Physiologia Plantarum 133: 318–326.

    Article  PubMed  CAS  Google Scholar 

  • Feng, Y. L. & G. L. Fu, 2008. Nitrogen allocation, partitioning and use efficiency in three invasive plant species in comparison with their native congeners. Biological Invasions 10: 891–902.

    Article  Google Scholar 

  • Feng, Y. L., H. Auge & S. K. Ebeling, 2007. Invasive Buddleja davidii allocates more nitrogen to its photosynthetic machinery than five native woody species. Oecologia 153: 501–510.

    Article  PubMed  Google Scholar 

  • Feng, Y. L., G. L. Fu & Y. L. Zheng, 2008. Specific leaf area relates to the differences in leaf construction cost, photosynthesis, nitrogen allocation, and use efficiencies between invasive and noninvasive alien congeners. Planta 228: 383–390.

    Article  PubMed  CAS  Google Scholar 

  • Feng, Y. L., Y. B. Lei, R. F. Wang, R. M. Callaway, A. Valiente-Banuet, Y. P. Li Inderjit & Y. L. Zheng, 2009. Evolutionary tradeoffs for nitrogen allocation to photosynthesis versus cell walls in an invasive plant. Proceedings of the National Academy of Sciences 106: 1853–1856.

    Article  CAS  Google Scholar 

  • Funk, J. L. & P. M. Vitousek, 2007. Resource-use efficiency and plant invasion in low-resource systems. Nature 446: 1079–1081.

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Serrano, H., J. Escarre, E. Garnier & F. X. Sans, 2005. A comparative growth analysis between alien invader and native Senecio species with distinct distribution ranges. Ecoscience 12: 35–43.

    Article  Google Scholar 

  • Grotkopp, E. & M. Rejmánek, 2007. High seedling relative growth rate and specific leaf area are traits of invasive species: phylogenetically independent contrasts of woody angiosperms. American Journal of Botany 94: 526–532.

    Article  PubMed  Google Scholar 

  • Grotkopp, E., M. Rejmánek & T. L. Rost, 2002. Toward a causal explanation of plant invasiveness: seedling growth and life history strategies of 29 pine (Pinus) species. The American Naturalist 159: 396–419.

    Article  PubMed  Google Scholar 

  • Howard, G. W. & K. L. S. Harley, 1998. How do floating aquatic weeds affect wetland conservation and development? How can these effects be minimised? Wetlands Ecology and Management 5: 215–225.

    Article  Google Scholar 

  • Hulme, P. E., 2009. Trade, transport and trouble: managing invasive species pathways in an era of globalization. Journal of Applied Ecology 46: 10–18.

    Article  Google Scholar 

  • Juliano, S. A. & L. P. Lounibos, 2005. Ecology of invasive mosquitoes: effects on resident species and on human health. Ecological Letters 8: 558–574.

    Article  Google Scholar 

  • Leishman, M. R., T. Haslehurst, A. Ares & Z. Baruch, 2007. Leaf trait relationships of native and invasive plants: community- and global-scale comparisons. New Phytologist 176: 635–643.

    Article  PubMed  CAS  Google Scholar 

  • Lowe S., M. Browne, S. Boudjelas, & M. De Poorter (2000). 100 of the World’s Worst Invasive Alien. Species A Selection from the Global Invasive Species Database. Invasive Species Specialist Group (ISSG), a specialist group of the Species Survival Commission (SSC) of the World Conservation Union (IUCN): 12 pp.

  • Matzek, V., 2011. Superior performance and nutrient-use efficiency of invasive plants over non-invasive congeners in a resource-limited environment. Biological Invasions 13: 3005–3014.

    Article  Google Scholar 

  • McAllister, C. A., A. K. Knapp & L. A. Maragni, 1998. Is leaf-level photosynthesis related to plant success in a highly productive grassland? Oecologia 117: 40–46.

    Article  Google Scholar 

  • McDowell, S. C. L., 2002. Photosynthetic characteristics of invasive and noninvasive species of Rubus (Rosaceae). American Journal of Botany 89: 1431–1438.

    Article  PubMed  Google Scholar 

  • Niinemets, Ü., F. Valladares & R. Ceulemans, 2003. Leaf-level phenotypic variability and plasticity of invasive Rhododendron ponticum and non-invasive Ilex aquifolium co-occurring at two contrasting European sites. Plant, Cell & Environment 26: 941–956.

    Article  Google Scholar 

  • Njambuya, J. & L. Triest, 2010. Comparative performance of invasive alien Eichhornia crassipes and native Ludwigia stolonifera under non-limiting nutrient conditions in Lake Naivasha, Kenya. Hydrobiologia 656: 221–231.

    Article  Google Scholar 

  • Ogutu-Ohwayo, R., R. E. Hecky, A. S. Cohen & L. Kaufman, 1997. Human impacts on the African Great Lakes. Environmental Biology of Fishes 50: 117–131.

    Article  Google Scholar 

  • Osunkoya, O. O., D. Bayliss, F. D. Panetta & G. Vivian-Smith, 2010. Leaf trait co-ordination in relation to construction cost, carbon gain and resource-use efficiency in exotic invasive and native woody vine species. Annals of Botany 106: 371–380.

    Article  PubMed  CAS  Google Scholar 

  • Pan, X., Y. Geng, W. Zhang, B. Li & J. Chen, 2006. The influence of abiotic stress and phenotypic plasticity on the distribution of invasive Alternanthera philoxeroides along a riparian zone. Acta Oecologica 30: 333–341.

    Article  Google Scholar 

  • Parker, J. D. & M. E. Hay, 2005. Biotic resistance to plant invasions? Native herbivores prefer non-native plants. Ecology Letters 8: 959–996.

    Article  Google Scholar 

  • Pattison, R. R., G. Goldstein & A. Ares, 1998. Growth, biomass allocation and photosynthesis of invasive and native Hawaiian rainforest species. Oecologia 117: 449–459.

    Article  Google Scholar 

  • Pimentel, D., R. Zuniga & D. Morrison, 2005. Update on the environmental and economic costs associated with alien-invasive species in the United States. Ecological Economics 52: 273–288.

    Article  Google Scholar 

  • Poorter, H. & J. R. Evans, 1998. Photosynthetic nitrogen-use efficiency of species that differ inherently in specific leaf area. Oecologia 116: 26–37.

    Article  Google Scholar 

  • Shipley, B., 2006. Net assimilation rate, specific leaf area and leaf mass ratio: which is most closely correlated with relative growth rate? A eta-analysis. Functional Ecology 20: 565–574.

    Article  Google Scholar 

  • Svilà, M., J. L. Espinar, M. Hejda, P. E. Hulme, V. Jarošík, J. L. Maron, J. Pergl, U. Schaffner, Y. Sun & P. Pyšek, 2011. Ecological impacts of invasive alien plants: a meta-analysis of their effects on species, communities and ecosystems. Ecological Letters 14: 702–708.

    Article  Google Scholar 

  • Villamagna, A. M. & B. R. Murphy, 2010. Ecological and socio-economic impacts of invasive water hyacinth (Eichhornia crassipes): a review. Freshwater Biology 55: 282–298.

    Article  Google Scholar 

  • Vitousek, P. M., 1986. Biological invasions and ecosystem properties: can species make a difference? Ecological Studies 58: 163–176.

    Article  Google Scholar 

  • Vitousek, P. M., 1990. Biological invasions and ecosystem processes: towards an integration of population biology and ecosystem studies. Oikos 57: 7–13.

    Article  Google Scholar 

  • Xie, Y. H. (2003). Studies on the Nutrient Ecology of Water Hyacinth (Eichhornia crassipes), an Exotic Invasive Species. Ph.D. thesis, Wuhan University (in Chinese with English abstract).

  • Xie, Y. H. & D. Yu, 2003. The significance of lateral roots in phosphorus (P) acquisition of water hyacinth (Eichhornia crassipes). Aquatic Botany 75: 311–321.

    Article  Google Scholar 

  • Xie, Y. H., M. Z. Wen, D. Yu & Y. k. Li, 2004. Growth and resource allocation of water hyacinth as affected by gradually increasing nutrient concentrations. Aquatic Botany 79: 257–266.

    Article  CAS  Google Scholar 

  • Xie, D., D. Yu, L. F. Yu & C. H. Liu, 2010. Asexual propagations of introduced exotic macrophytes Elodea nuttallii, Myriophyllum aquaticum, and M. propinquum are improved by nutrient-rich sediments in China. Hydrobiologia 655: 37–47.

    Article  Google Scholar 

  • Xiong, W., D. Yu, Q. Wang, C. H. Liu & L. G. Wang, 2008. A snail prefers native over exotic freshwater plants: implications for the enemy release hypotheses. Freshwater Biology 53: 2256–2263.

    Google Scholar 

Download references

Acknowledgments

We thank Dr. Jin Yang, Wenhua You, Zhong Wang, and Chang Qian for discussion and revision on the manuscript. We also greatly appreciate Dr. Sidinei M. Thomaz and two anonymous reviewers for their valuable comments on an early version of the manuscript. This research was supported by the National Natural Science Foundation of China (30930011 and 31170339).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chunhua Liu or Dan Yu.

Additional information

Handling editor: Sidinei Magela Thomaz

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fan, S., Liu, C., Yu, D. et al. Differences in leaf nitrogen content, photosynthesis, and resource-use efficiency between Eichhornia crassipes and a native plant Monochoria vaginalis in response to altered sediment nutrient levels. Hydrobiologia 711, 129–137 (2013). https://doi.org/10.1007/s10750-013-1471-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-013-1471-3

Keywords

Navigation